The calculation method for SNE

(1) Select one isotherm and one error function (for example, the *ERRSQ* error function) and get the *solver add-in* output to determine the isotherm parameters in a way that minimizes the applied error function (in this case, *ERRSQ*). (If the applied error function is the coefficient of determination, the *solver add-in* must be adjusted on maximizing.)

(2) Determine the values of other error functions based on isotherm parameters obtained from step(1).

(3) Perform the above steps exactly for all other error functions.

(4) Select the maximum output of each error function from all sets. In order to calculate the normalized error, the value of other sets should be divided into the maximum value. This should be done for all error functions.

(5) Calculate the summation of all of these normalized errors for each parameter.

Error function	Abbreviation	Definition/expression
The coefficient of determination	<i>R</i> ²	$R^{2} = \frac{\sum (q_{e,meas} - \overline{q}_{e,calc})^{2}}{\sum (q_{e,meas} - \overline{q}_{e,calc})^{2} + \sum (q_{e,meas} - q_{e,calc})^{2}}$
Nonlinear chi-square test	χ^2	$\chi^{2} = \sum_{i=1}^{n} \frac{\left(q_{e,meas} - q_{e,calc}\right)^{2}}{q_{e,meas}}$
Residual root mean square error	RMSE	$\text{RMSE} = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} \left(q_{e,meas} - q_{e,calc} \right)^2}$
Average relative error	ARE	$ARE = \frac{100}{n} \sum_{i=1}^{n} \left \frac{q_{e,meas} - q_{e,calc}}{q_{e,meas}} \right $
Standard deviation of relative errors	S_{RE}	$S_{RE} = \sqrt{\frac{\sum_{i=1}^{n} \left[\left(q_{e,meas} - q_{e,calc} \right) - ARE \right]^{2}}{n-1}}$
Marquardt's percent standard deviation	MPSD	$MPSD = 100\sqrt{\frac{1}{n-p}\sum_{i=1}^{n} \left(\frac{q_{e,meas} - q_{e,calc}}{q_{e,meas}}\right)^2}$
Sum squares errors	ERRSQ	$\text{ERRSQ} = \sum_{i=1}^{n} \left(q_{e,meas} - q_{e,calc} \right)^2$

Table S1: Lists of error functions

 q_{meas} : Measured ion concentration; q_{calc} : calculated ion concentration with models; *n*: the number of experimental data points; *p*: the number of parameters in each isotherm model.

Isotherm	Non-linear equation	Linear equation
Freundlich	$q_e = K_f C_e^{1/n}$	$\ln(q_e) = \ln(\mathbf{K}_f) + \frac{1}{n} \ln(\mathbf{C}_e)$
Langmuir	$q_e = \frac{q_m K_a C_e}{1 + K_a C_e}$	$\frac{C_e}{q_e} = \frac{1}{q_m}C_e + \frac{1}{K_a q_m}$
Redlich–Peterson	$q_e = \frac{AC_e}{1 + BC_e^m}$	$\ln(A\frac{C_e}{q_e} - 1) = m\ln(C_e) + \ln(B)$

Table S2. Mathematical equations of the single-component isotherm models employed ³³

^{*a*} $K_{f:}$ Freundlich isotherm constant [(mg/g)(L/mg)^{1/n}]; ^{*b*} *n*: Freundlich exponent (dimensionless) ^{*c*} q_m : Langmuir monolayer adsorption capacity (mg/g); ^{*d*} K_a : Langmuir isotherm constant (L/mg) ^{*e*} A: Redlich–Peterson isotherm constant (L/g); ^{*f*} B: Redlich Peterson isotherm constant (L/mg)^{1/m} ^{*g*} m: Redlich-Peterson constant.

Table S3. The isotherm parameters and error deviation data for the adsorption of Pb(II) onto $ZnCl_2$ -MCM-41 obtained by non-linear regression method (T=20 °C, pH=7, sorbent dosage=0.333 g L⁻¹, 60 min, 300 rpm)

Freundlich (two parameter isotherm)								
	R^2	χ^{2}	RMSE	ARE	$S_{\scriptscriptstyle RE}$	MPSD	ERRSQ	
K _f	56.7	55.6	56.4	42.6	50.4	43.4	56.5	
1 / <i>n</i>	0.576	0.626	0.577	0.663	0.624	0.697	0.577	
R^2	0.991313	0.986864	0.991313	0.980046	0.985037	0.961906	0.991313	
χ^{2}	22.45112448	11.8379	15.8801	18.6419	15.1521	19.2883	15.72590	
RMSE	23.1949	28.5768	23.1913	35.4180	30.5727	49.2948	23.1913	
ARE	22.5491	16.0817	22.3045	10.7155	14.6455	10.9127	22.3049	
$S_{_{RE}}$	35.8897	31.3583	35.4203	27.3824	24.2253	45.0168	35.4207	
MPSD	43.3860	26.1996	42.9553	17.2372	23.3644	15.4520	42.9560	
ERRSQ	1614.01	2449.9083	1613.51	3763.33	2804.05	7289.94	1613.51	
SNE	5.4891	4.4522	5.1965	4.5344	4.3995	5.66957	5.15833	
Langmuir (two parameter isotherm)								
	R^2	χ^{2}	RMSE	ARE	$S_{\scriptscriptstyle RE}$	MPSD	ERRSQ	
q_m	506.5	479.1	506.6	440.4	516.5	426.8	506.6	
K_a	0.142	0.155	0.142	0.171	0.130	0.176	0.142	
R^2	0.999494	0.999027	0.999494	0.996972	0.997694	0.995741	0.999494	
χ^2	1.4282	1.0645	1.4307	1.7224	4.1567	2.1284	1.4307	

RMSE	5.5688	7.7290	5.5688	13.6498	11.9210	16.1978	5.5688
ARE	5.9452	4.5185	5.9513	4.1043	10.0124	4.3710	5.9513
$S_{\scriptscriptstyle RE}$	6.3097	8.4609	6.2984	12.7020	2.4732	14.5385	6.2984
MPSD	10.9172	7.9592	10.9271	6.3112	16.3789	6.2407	10.9271
ERRSQ	93.0358	9.7480	93.0346	558.9575	426.3332	787.1149	93.0346
SNE	3.4999	3.2643	3.5009	4.6336	5.4459	5.3258	3.5009
		Redlich-Pete	erson (three	parameter is	sotherm)		
	R^2	χ^{2}	RMSE	ARE	$S_{\scriptscriptstyle RE}$	MPSD	ERRSQ
A	75.84	79.93	75.84	75.83	68.30	84.76	75.84
В	0.2802	0.3098	0.2802	0.2802	0.2452	0.3546	0.2802
т	0.837	0.815	0.837	0.837	0.861	0.780	0.837
R^2	0.999981	0.999969	0.999981	0.999981	0.999776	0.999855	0.999981
χ^{2}	0.0962	0.0744	0.0962	0.0962	0.4571	0.1245	0.0962
RMSE	1.0575	1.3712	1.0575	1.0579	3.7023	2.9823	1.0575
ARE	1.3131	1.3598	1.3130	1.3117	3.3594	1.3884	1.3130
$S_{\scriptscriptstyle RE}$	1.5299	1.9357	1.5293	1.5152	0.8018	3.0014	1.5293
MPSD	3.9737	2.9856	3.9740	3.9752	7.5103	2.5850	3.9740

Table S4

Comparison of monolayer maximum adsorption capacities (q_{max}) of some adsorbents for Pb(II) removal from aqueous solution

Sorbent	Initial concentration	Amount of adsorbent	Adsorption capacity	
	(mg/L)	(g/L)	(mg/g)	
Polyvinyltetrazole-grafted resin ¹	103-1656	1.0	314.9	
Acrylonitrile–Butadiene–Styrene ²	20-300	4.0	56.5	
Nanostructured BiOBr ³	2-40	0.5	6.5	
Thiol grafted on silica gel ⁴	207-1656	2.5	497.1	
Fe ₃ O ₄ nanocapsules ⁵	0.1-50	0.5	79.0	
Amine grafted mesoporous silica embedded with nano-magnetite ⁶	10-20	0.667	222.4	
Amino siloxane oligomer-linked graphene oxide ⁷	10-400	1.0	312.5	
ZnCl ₂ -MCM-41 (this work)	2-200	0.33	479.0	

- 1. Y. Chen, M. He, C. Wang and Y. Wei, *Journal of Materials Chemistry A*, 2014, **2**, 10444-10453.
- 2. A. Masoumi, K. Hemmati and M. Ghaemy, RSC Advances, 2015, 5, 1735-1744.
- 3. X. Wang, W. Liu, J. Tian, Z. Zhao, P. Hao, X. Kang, Y. Sang and H. Liu, *Journal of Materials Chemistry A*, 2014, **2**, 2599-2608.
- 4. L. N. Arakaki, V. L. A. Filha, J. G. Espínola, M. G. da Fonseca, S. F. de Oliveira, T. Arakaki and C. Airoldi, *Journal of Environmental Monitoring*, 2003, **5**, 366-370.
- 5. K. Cheng, Y.-M. Zhou, Z.-Y. Sun, H.-B. Hu, H. Zhong, X.-K. Kong and Q.-W. Chen, *Dalton Trans.*, 2012, **41**, 5854-5861.
- 6. J. Chung, J. Chun, J. Lee, S. H. Lee, Y. J. Lee and S. W. Hong, *Journal of hazardous materials*, 2012, **239**, 183-191.
- 7. S. Luo, X. Xu, G. Zhou, C. Liu, Y. Tang and Y. Liu, *Journal of hazardous materials*, 2014, **274**, 145-155.

Fig. S1. Distribution of Pb(II) species as a function of pH.

Fig. S2. The effect of pH on the adsorption of Pb(II) ions on ZnCl₂-MCM-41 at (C_0 =50 mgL⁻¹; T=20 °C; Sorbent dosage=0.333 gL⁻¹; 300 rpm)

Fig. S3. Adsorption isotherms of Pb(II) removal by ZnCl₂-MCM-41