Supporting Information

High yield synthesis of nano-size $g-C_3N_4$ derivatives by dissolve-regrowth method with enhanced photocatalytic ability

Yuanguo Xu,^a Meng Xie,^b Shuquan Huang,^a Hui Xu^{*},^a Haiyan Ji,^c Jiexiang Xia,^a Yeping Li,^b Huaming Li^{*a}

^aSchool of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang,

212013, P R China

^bSchool of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P R China

^cSchool of Chemistry and Chemical Engineering, 301 Xuefu Road, Zhenjiang, 212013, P R China

Fig. S1 The photolysis of MO under visible light irradiation without photocatalyst.

Fig. S2 The photocatalytic of nano-size g-C₃N₄-HNO₃ under visible light irradiation.

The g- C_3N_4 -HNO₃ shows a good adsorptivity, it can adsorb about 78 % of the MO in 0.5 h, but it almost has no photoactivity even the irradiation time reach 4 h. The surface of the samples still shows the orange color, which come from the adsorbed MO dye.