Supporting Information

Fluorescent chemodosimeter based on spirobenzopyran in NIR for organophosphorus nerve agent mimics (DCP)

Shyamaprosad Goswami,^{*} Sangita Das, Krishnendu Aich

^aDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711103, West Bengal, India E-mail: <u>spgoswamical@yahoo.com</u>

1. Synthetic scheme for the preparation of the probe (SBN):

Scheme 1: Synthetic strategy of SBN

2. Time dependent fluorescence change of SBN upon addition of DCP and reaction kinetics:

The time vs. emission I ₆₇₅ plots was obtained by using first order rate equation. We get the rate constant = $k = slope \times 2.303 = 0.55 \times 10^{-2} \text{ Sec}^{-1}$.

Figure S1: Time (Sec) vs. emission (I₆₇₅) plot

3. Comparison of absorbance and fluorescence study of SBN after addition of DCP and other analytes.

Figure S2. (a) Absorbance and (b) fluorescence spectra of SBN (10 μ M) upon addition of different analytes (5 equivalents) in aqueous-CH₃CN solution.

4. Determination of detection limit

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of **SBN** without DCP was measured by 10 times and the standard deviation of blank measurements was determined.

The detection limit (DL) of **SBN** for DCP was determined from the following equation: $DL = K \times Sb_1/S$, Where K = 2 or 3 (we take 3 in this case); Sb_1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

From the graph we get slope = 7.58×10^7 , and Sb₁ value is 0.54

Thus using the formula we get the Detection Limit = 2.1×10^{-8} M i.e. SBN can detect DCP in this minimum concentration by fluorescence techniques

Figure S3: The linear response curve of emission at 675 nm of SBN depending on DCP concentration

Figure S4: The linear response curve of absorbance at 440 nm of SBN depending on DCP concentration

Figure S5: Change of emission intensity of SBN (10 μ M) upon addition of DCP (1×10⁻⁴ M) in DCM

5. NMR and HRMS of SBN

Figure S6: ¹H NMR (400 MHz) spectra of compound SBN in CDCl₃

Figure S7: ¹H NMR (expansion) spectra of compound SBN in CDCl₃.

Figure S8: ¹³C NMR (125 MHz) spectra of compound SBN in CDCl₃.

Figure S9: ¹³C NMR (expansion) spectra of compound SBN in CDCl₃.

Figure S10: HRMS of the receptor (SBN).

6. ¹H and ¹³C NMR of reaction product:

Figure S11: ¹H NMR (400 MHz) of the reaction product after hydrolysis.

Figure S12: ¹³C NMR (100 MHz) of the reaction product after hydrolysis.

Figure S13: HRMS of the reaction product after hydrolysis.

Figure S14: HRMS (expansion) of the reaction product after hydrolysis.