## **Electronic Supporting Information**

## Monolithic Organic/Inorganic Ternary Nanohybrids toward Electron Transfer Cascade for Enhanced Visible-Light Photocatalysis

Yingzhi Chen, <sup>a,b</sup>Mengbin Yue,<sup>c</sup> Zheng-Hong Huang, <sup>\*b</sup>Lu-Ning Wang<sup>a</sup> and Feiyu

Kang<sup>b</sup>

<sup>a</sup> School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China

<sup>b</sup> Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China <sup>c</sup> School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, PR China

> $O_2 + 2H_2O + 4e^- \longrightarrow 4OH^ Zn^{2++}2OH^- \longrightarrow Zn(OH)_2$  $Zn(OH)_2 \longrightarrow ZnO^+ H_2O$





Fig. S2. Photoresponse curves of ZnO NRs.



Fig. S3. UV-Vis absorption spectra of RhB vs. photoreaction time over

CNF/ZnO/TCPP hybrid catalysts ( $\lambda_{irradiation}$ >400 nm).



Fig. S4 Fitting results of photodegrading RhB according to the Langmuir– Hinshelwood model ( $\lambda_{irradiation}$ >400 nm), where  $C_t$  is the concentration of RhB at the irradiation time t and  $C_0$  is the concentration of RhB in the absorption equilibrium before irradiation.

**Table S1.** Rate constant (*k*), the degradation rate (*r*), and the photonic efficiency ( $\eta$ ) of RhB in different monolithic systems.

| System       | $k^{a}(*10^{3} \min^{-1})$ | $r^{b}(*10^{8} \text{ mol } 1^{-1} \text{ min}^{-1})$ | $\eta^{c}(*10^{4})$ |
|--------------|----------------------------|-------------------------------------------------------|---------------------|
| CNF          | 0.193                      | 0.2                                                   | 0.03                |
| CNF/ZnO      | 2.2                        | 2.29                                                  | 0.38                |
| CNF/ZnO/TCPP | 9.39                       | 9.78                                                  | 1.63                |

<sup>*a*</sup> The slope of the pseudo-first-order linear line in Fig. S3.

 $^{b} \pm 10\%$ .

 $^{c}\eta = r/I_{0}$ , where  $I_{0}$  is the incident photon flux, here  $I_{0} \approx 6*10^{-4}$  Einstein l<sup>-1</sup> min<sup>-1</sup>.