Synthesis of functionalized γ-lactones via a three-component cascade reaction catalyzed by consecutive N-heterocyclic carbene systems

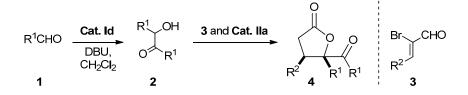
Qian Zhao,[†]^a Bo Han,[†]^b Biao Wang,^a Hai-jun Leng,^b Cheng Peng^{*a,b} and Wei Huang^{*a}

^a Ministry of Education Key Laboratory of Standardization of Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China. E-mail: huangwei@cdutcm.edu.cn

^b State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China. E-mail: pengcheng@cdutcm.edu.cn

[†] These authors contributed equally to this work.

Supporting Information


Table of Contents

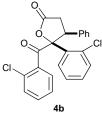
- 1. General methods
- 2. General procedure for the synthesis of γ-lactone 4
- 3. Crystal data of 4a
- 4. NMR spectra

1. General methods

NMR data was obtained for ¹H at 400 MHz, and for ¹³C at 100 MHz. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution. ESI HRMS was performed on a Waters SYNAPT G2. Column chromatography was performed on silica gel (200-300 mesh) using an eluent of ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates; products were visualized using UV light and I₂. Melting points were determined on a Mel-Temp apparatus and were not corrected. All chemicals were used from Adamas-beta without purification unless otherwise noted.

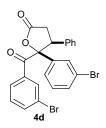
2. General procedure for the synthesis of γ-lactone 4

The reaction was carried out with precatalyst **Id** (0.1 mmol), DBU (0.3 mmol) and aldehyde **1** (1.6 mmol) in CH₂Cl₂ (2.0 mL) at 50 °C for a specified reaction time until the sufficient acyloin **2** was generated (monitored by TLC), after which precatalyst **IIa** (0.1 mmol) and 2-bromoenal **3** (0.4 mmol) were added in-situ. The reaction mixture was stirred until the reaction completed. Then the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give γ -lactone **4**.


4a

4a was obtained as a white solid in 64% yield for two steps after flash chromatography. The dr value was calculated to be 90:10 by ¹H NMR analysis of the crude reaction mixture. m.p. 139-140 °C; ¹H NMR (400 MHz, CDCl₃): $\delta =$ 7.90 (d, *J* = 7.6 Hz, 2H), 7.46-7.43 (m, 1H), 7.32-7.26 (m, 2H), 7.11-7.07 (m, 8H), 6.94 (s, 2H), 4.88 (t, *J* = 5.6 Hz, 1H), 3.03 (dd, *J*₁ = 18.0 Hz, *J*₂ = 8.8 Hz, 1H),

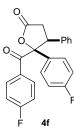
2.88 (dd, $J_1 = 18.0$ Hz, $J_2 = 3.2$ Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 195.29$, 175.24, 137.31, 135.33, 133.59, 133.42, 130.95, 128.79, 128.45, 128.27, 128.19, 128.07, 127.26, 124.68,


95.07, 47.94, 35.53 ppm; ESI HRMS: calcd. For C₂₃H₁₈O₃+Na 365.1154, found 365.1151.

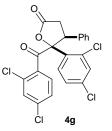
For the minor diastereomer of 4a, ¹H NMR (400 MHz, CDCl₃): $\delta = 7.81$ (d, J = 7.6 Hz, 2H), 7.60 (d, J = 7.2 Hz, 2H), 7.47-7.40 (m, 4H), 7.30-7.24 (m, 5H), 7.18-7.17 (m, 2H), 4.17 (d, J = 7.6 Hz, 7.18 Hz)1H), 2.87 (dd, $J_1 = 17.6$ Hz, $J_2 = 8.0$ Hz, 1H), 2.58 (d, J = 17.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, $CDCl_3$): $\delta = 197.48, 175.65, 140.13, 138.46, 136.14, 132.84, 129.40, 129.17, 128.97, 128.93, 128.9$ 128.01, 127.57, 127.49, 125.27, 95.85, 53.94, 36.43 ppm; ESI HRMS: calcd. For C₂₃H₁₈O₃+Na 365.1154, found 365.1156.

4b was obtained as a white solid in 65% yield for two steps after flash chromatography. The dr value was calculated to be 95:5 by ¹H NMR analysis of the crude reaction mixture. m.p. 144-145 °C; ¹H NMR (400 MHz, CDCl₃): $\delta =$ 7.57 (d, J = 7.2 Hz, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.26-7.21 (m, 1H), 7.12-6.93 (m, 10H), 5.05 (d, J = 8.8 Hz, 1H), 3.62 (dd, $J_1 = 18.0$ Hz, $J_2 = 9.2$ Hz, 1H), 2.71 (d, J= 18.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 193.46, 175.25, 139.28, 134.30, 134.02, 133.48, 131.81, 131.11, 130.70, 129.80, 129.70, 129.32, 128.21, 127.93, 127.38, 126.77, 125.48, 94.29, 45.32, 37.97 ppm; ESI HRMS: calcd. For C₂₃H₁₆Cl₂O₃+Na 433.0374, found 433.0370.

4c was obtained as a white solid in 68% yield for two steps after flash chromatography. The dr value was calculated to be 88:15 by ¹H NMR analysis of the crude reaction mixture. m.p. 114-115 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.84 (d, J = 8.4 Hz, 2H), 7.31-7.29 (m, 2H), 7.11-7.09 (m, 5H), 6.98-6.93 (m, 4H), 4.85 (dd, J₁ = 8.0 Hz, J_2 = 5.6 Hz, 1H), 3.03 (dd, J_1 = 18.0 Hz, J_2 = 8.4 Hz, 1H), 2.87 (dd, J_1 = 18.0 Hz, $J_2 = 5.6$ Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃); $\delta = 193.84$, 174.65, 140.29, 136.89, 134.49, 133.76, 132.27, 131.61, 128.79, 128.76, 128.63, 128.35, 127.62, 126.07, 94.48, 47.75, 35.38 ppm; ESI HRMS: calcd. For C₂₃H₁₆Cl₂O₃+Na 433.0374, found 433.0371.

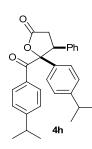


4d was obtained as a white solid in 65% yield for two steps after flash chromatography. The dr value was calculated to be 92:8 by ¹H NMR analysis of the crude reaction mixture. m.p. 126-127 °C; ¹H NMR (400 MHz, CDCl₃): $\delta =$ 8.08 (s, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.60-7.56 (m, 1H), 7.25-7.23 (m, 1H),


7.20-7.16 (m, 2H), 7.11 (m, 3H), 7.00-6.91 (m, 4H), 4.84 (t, J = 6.8 Hz, 1H), 3.03 (dd, $J_1 = 18.0$ Hz, $J_2 = 8.4$ Hz, 1H), 2.88 (dd, $J_1 = 18.0$ Hz, $J_2 = 5.2$ Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 193.60, 174.52, 137.25, 136.73, 136.55, 135.04, 133.47, 131.57, 130.07, 129.94, 129.60, 128.59, 128.32, 127.78, 127.70, 123.26, 122.92, 122.68, 94.20, 47.94, 35.24 ppm; ESI HRMS: calcd. For C₂₃H₁₆Br₂O₃+Na 520.9364, found 520.9367.

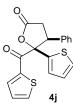
4e was obtained as a white solid in 70% yield for two steps after flash chromatography. The dr value was calculated to be 85:15 by ¹H NMR analysis of the crude reaction mixture. m.p. 143-144 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.76 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.26-7.24 (m, 3H), 7.11 (s, 3H), 6.91-6.89 (m, 3H), 4.84 (t, J = 6.4 Hz, 1H), 3.03 (dd, $J_1 = 18.0$ Hz, $J_2 = 8.4$ Hz, 1H), 2.87 (dd, $J_1 = 18.0$ Hz, $J_2 = 8.4$ Hz, 1H), 2.87 (dd, $J_1 = 18.0$ Hz, $J_2 = 8.4$ Hz, 1H), 2.87 (dd, $J_1 = 18.0$ Hz, $J_2 = 8.4$ Hz, 1H), 2.87 (dd, $J_1 = 18.0$ Hz, $J_2 = 8.4$ Hz, 1H), 2.87 (dd, $J_1 = 18.0$ Hz, $J_2 = 8.4$ Hz, 1H), 2.87 (dd, $J_1 = 18.0$ Hz, $J_2 = 8.4$ Hz, 1H), 2.87 (dd, $J_1 = 18.0$ Hz, $J_2 = 8.4$ Hz, 1H), 2.87 (dd, $J_1 = 18.0$ Hz, $J_2 = 8.4$ Hz, 1H), 2.87 (dd, $J_1 = 18.0$ Hz, $J_2 =$ 18.0 Hz, $J_2 = 5.2$ Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.85$, 174.58, 136.83, 134.26, 132.31, 132.01, 131.78, 131.74, 129.19, 128.62, 128.36, 127.64, 126.34, 122.68, 94.50, 47.70,

35.37 ppm; ESI HRMS: calcd. For C₂₃H₁₆Br₂O₃+Na 520.9364, found 520.9366.


4f was obtained as a white solid in 65% yield for two steps after flash chromatography. The dr value was calculated to be 87:13 by ¹H NMR analysis of the crude reaction mixture. m.p. 127-128 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.95$ (s, 2H), 7.10 (br s, 3H), 7.01-7.00 (m, 4H), 6.92 (m, 2H), 6.83-6.79 (m, 2H), 4.86 (t, J = 6.0 Hz, 1H), 3.03 (dd, J_1 = 18.0 Hz, J_2 = 8.4 Hz, 1H), 2.88 (dd, J_1 = 18.0 Hz, J_2 = 4.8 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 193.59, 174.82, 165.77 (d, J_{CF} = 255 Hz), 162.41 (d, $J_{CF} = 247$ Hz), 137.10, 133.78 (d, $J_{CF} = 9$ Hz), 131.14 (d, $J_{CF} = 4$ Hz), 129.72 (d, $J_{CF} = 3$ Hz), 128.65, 128.27, 127.50, 126.54 (d, $J_{CF} = 9$ Hz), 115.72 (d, $J_{CF} = 3$ Hz), 115.50 (d, $J_{CF} = 2$ Hz), 94.57, 47.81, 35.38 ppm; ESI HRMS: calcd. For C₂₃H₁₆F₂O₃+Na 401.0965, found 401.0968.

4g was obtained as a white solid in 70% yield for two steps after flash chromatography. The dr value was calculated to be 92:8 by ¹H NMR analysis of the crude reaction mixture. m.p. 148-149 °C; ¹H NMR (400 MHz, CDCl₃): $\delta =$ 7.49 (d, J = 8.4 Hz, 1H), 7.43 (s, 1H), 7.19-7.17 (m, 1H), 7.07-6.97 (m, 8H), 4.98 $(d, J = 8.8 \text{ Hz}, 1\text{H}), 3.61 (dd, J_1 = 18.0 \text{ Hz}, J_2 = 9.2 \text{ Hz}, 1\text{H}), 2.82 (d, J = 18.4 \text{ Hz}, J_2 = 18.4 \text{ Hz})$

1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.09$, 174.73, 138.86, 137.85, 135.08, 134.85,


132.83, 132.17, 131.36, 131.33, 130.30, 129.68, 128.73, 128.46, 127.75, 127.25, 126.03, 93.71, 45.39, 37.76 ppm; ESI HRMS: calcd. For C₂₃H₁₄Cl₄O₃+Na 500.9595, found 500.9597.

4h was obtained as a white solid in 54% yield for two steps after flash chromatography. The dr value was calculated to be 86:14 by ¹H NMR analysis of the crude reaction mixture. m.p. 131-132 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.86$ (d, J = 8.4 Hz, 2H), 7.17-7.15 (m, 2H), 7.04-7.03 (m, 3H), 6.96-6.88 (m, 6H), 4.82 (dd, $J_1 = 8.4$ Hz, $J_2 = 6.4$ Hz, 1H), 2.99 (dd, $J_1 = 18.0$ Hz, $J_2 = 8.8$ Hz, 1H),

2.90-2.83 (m, 2H), 2.77-2.71 (m, 1H), 1.20 (d, J = 2.0 Hz, 3H), 1.18 (d, J = 1.6 Hz, 3H), 1.11 (d, J = 3.2 Hz, 3H), 1.10 (d, J = 3.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃); $\delta = 195.06$, 175.47, 154.91, 148.99, 137.40, 132.71, 131.44, 131.32, 128.85, 127.86, 127.06, 126.39, 124.57, 95.20, 48.04, 35.40, 34.24, 33.60, 23.78, 23.77, 23.53, 23.47 ppm; ESI HRMS: calcd. For C₂₉H₃₀O₃+Na 449.2093, found 449.2090.

4i was obtained as a white solid in 72% yield for two steps after flash chromatography. The dr value was calculated to be 80:20 by ¹H NMR analysis of the crude reaction mixture. m.p. 126-127 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.65 (s, 1H), 7.32 (br s, 1H), 7.18 (br s, 4H), 7.09 (br s, 2H), 6.49 (s, 1H), 6.15 (d, J = 8.8 Hz, 2H), 4.70 (t, J =8.4 Hz, 1H), 3.11-2.97 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 181.03$, 174.27, 149.14, 148.16, 147.95, 143.20, 136.25, 128.29, 128.24, 127.66, 123.13, 112.56, 110.58, 109.38, 89.67, 46.69, 34.42 ppm; ESI HRMS: calcd. For C₁₉H₁₄O₅+Na 345.0739, found 345.0743.

4j was obtained as a white solid in 71% yield for two steps after flash chromatography. The dr value was calculated to be 75:25 by ¹H NMR analysis of the crude reaction mixture. m.p. 90-91 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.98$ (d, J = 3.6 Hz, 1H), 7.66 (d, J = 4.8 Hz, 1H), 7.16-7.05 (m, 7H), 6.75-6.72 (m, 1H), 6.60-6.59 (m, 1H), 4.75 (t, J = 7.2 Hz, 1H), 3.06-2.93 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 187.83$, 174.24, 139.34, 138.10, 136.77, 136.63, 135.76, 128.70, 128.61, 128.18, 127.67, 127.10, 126.17, 126.09,

93.47, 48.18, 34.96 ppm; ESI HRMS: calcd. For C₁₉H₁₄O₃S₂+Na 377.0282, found 377.0280.

4k was obtained as a white solid in 60% yield for two steps after flash chromatography. The dr value was calculated to be 92:8 by ¹H NMR analysis of the crude reaction mixture. m.p. 101-103 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.93$ (d, J = 7.6 Hz, 2H), 7.48-7.44 (m, 1H), 7.34-7.26 (m, 5H), 7.12-7.03 (m, 5H), 7.00-6.97 (m, 1H), 5.72 (d, J = 8.8 Hz, 1H), 3.15 (dd, $J_I = 18.0$ Hz, $J_2 = 9.2$ Hz, 1H), 2.75 (d, J = 18.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.80$, 175.42, 136.79, 134.83, 134.20, 133.48, 133.29, 131.04, 129.50, 128.57, 128.54, 128.31, 128.24, 128.20, 126.92, 124.67, 95.86, 43.24, 36.73 ppm; ESI HRMS: calcd. For C₂₃H₁₇ClO₃+Na 399.0764, found 399.0760.

41 was obtained as a white solid in 61% yield for two steps after flash chromatography. The dr value was calculated to be 86:14 by ¹H NMR analysis of the crude reaction mixture. m.p. 123-124 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.89$ (d, J = 8.0 Hz, 2H), 7.47-7.43 (m, 1H), 7.32-7.29 (m, 2H), 7.15 (br s, 3H), 7.06-7.04 (m, 4H), 6.86 (d, J = 7.6 Hz, 2H), 4.85 (t, J = 7.6 Hz, 1H), 3.01 (dd, $J_I = 18.0$ Hz, $J_2 = 8.4$ Hz, 1H), 2.82 (dd, $J_I = 18.0$ Hz, $J_2 = 6.4$ Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.03$, 173.71, 134.67, 134.01, 132.50, 132.41, 132.18, 129.91, 129.10, 127.65, 127.46, 127.26, 127.17, 123.58, 93.64, 46.37, 34.28 ppm; ESI HRMS: calcd. For C₂₃H₁₇ClO₃+Na 399.0764, found 399.0767.

4m was obtained as a white solid in 66% yield for two steps after flash chromatography. The dr value was calculated to be 85:15 by ¹H NMR analysis of the crude reaction mixture. m.p. 149-150 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.89$ (d, J = 8.0 Hz, 2H), 7.46-7.43 (m, 1H), 7.32-7.28 (m, 2H), 7.21-7.15 (m, 5H), 7.04 (br s, 2H), 6.80 (d, J = 8.0 Hz, 2H), 4.83 (t, J = 7.6 Hz, 1H), 3.01 (dd, $J_I = 18.0$ Hz, $J_2 = 8.8$ Hz, 1H), 2.81 (dd, $J_I = 18.0$ Hz, $J_2 = 6.4$ Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 195.04$, 174.70, 136.23, 135.02, 133.53, 133.44, 131.16, 130.94, 130.49, 128.70, 128.52, 128.30, 124.62, 121.37, 94.59, 47.48, 35.26 ppm; ESI HRMS: calcd. For C₁₂₃H₁₇BrO₃+Na 443.0259, found 443.0262.

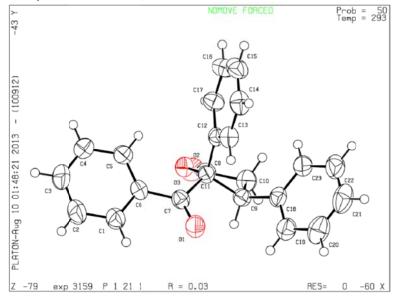
4n was obtained as a white solid in 57% yield for two steps after flash chromatography. The dr value was calculated to be 90:10 by ¹H NMR analysis of the crude reaction mixture. m.p. 112-114 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.93$ (d, J = 7.6 Hz, 2H), 7.47-7.44 (m, 1H), 7.33-7.30 (m, 2H), 7.23-7.21 (m, 2H), 7.13-7.00 (m,

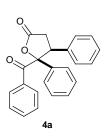
5H), 6.93-6.90 (m, 1H), 6.75-6.70 (m, 1H), 5.28 (dd, $J_1 = 9.2$ Hz, $J_2 = 1.6$ Hz, 1H), 3.09 (dd, $J_1 = 18.0$ Hz, $J_2 = 8.8$ Hz, 1H), 2.85 (dd, $J_1 = 18.0$ Hz, $J_2 = 2.0$ Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.87$, 175.19, 160.44 (d, $J_{CF} = 245$ Hz), 135.29, 133.47, 133.34, 131.04, 129.88 (d, $J_{CF} = 4$ Hz), 129.24 (d, $J_{CF} = 9$ Hz), 128.38, 128.29, 128.21, 125.80 (d, $J_{CF} = 13$ Hz), 124.38, 123.97 (d, $J_{CF} = 4$ Hz), 115.38 (d, $J_{CF} = 23$ Hz), 95.34, 42.16, 35.45 ppm; ESI HRMS: calcd. For C₂₃H₁₇FO₃+Na 383.1059, found 383.1063.

40 was obtained as a white solid in 61% yield for two steps after flash chromatography. The dr value was calculated to be 85:15 by ¹H NMR analysis of the crude reaction mixture. m.p. 129-130 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.90$ (d, J = 8.0 Hz, 2H), 7.47-7.43 (m, 1H), 7.33-7.29 (m, 2H), 7.15-7.14 (m, 3H), 7.07-7.02 (m, 3H), 6.79-6.73 (m, 2H), 6.65 (d, J = 10.0 Hz, 1H), 4.88 (t, J = 7.2 Hz, 1H), 3.03 (dd, $J_I = 18.0$ Hz, $J_2 = 8.8$ Hz, 1H), 2.86 (dd, $J_I = 18.0$ Hz, $J_2 = 6.0$ Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.96$, 174.70, 162.36 (d, $J_{CF} = 244$ Hz), 139.85 (d, $J_{CF} = 7$ Hz), 135.05, 133.53, 133.42, 130.97, 129.52, 128.62, 128.45, 128.30, 125.17, 124.57, 115.93 (d, $J_{CF} = 21$ Hz), 114.25 (d, $J_{CF} = 21$ Hz), 94.76, 47.59, 35.27 ppm; ESI HRMS: calcd. For C₂₃H₁₇FO₃+Na 383.1059, found 383.1056.

4p was obtained as a white solid in 68% yield for two steps after flash chromatography. The dr value was calculated to be 82:18 by ¹H NMR analysis of the crude reaction mixture. m.p. 120-122 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.89$ (d, J = 8.0 Hz, 2H), 7.47-7.43 (m, 1H), 7.33-7.29 (m, 2H), 7.15-7.14 (m, 3H), 7.04-7.03 (m, 2H), 6.91-6.88 (m, 2H), 6.79-6.75 (m, 2H), 4.88-4.85 (m, 1H), 3.02 (dd, $J_I = 17.6$ Hz, $J_2=8.4$ Hz, 1H), 2.83 (dd, $J_I = 18.0$ Hz, $J_2 = 6.4$ Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 195.16$, 174.92, 161.85 (d, $J_{CF} = 245$ Hz), 135.17, 133.52, 133.46, 132.93 (d, $J_{CF} = 3$ Hz), 130.95, 130.37 (d, $J_{CF} = 8$ Hz), 128.63, 128.40, 128.30, 124.60, 114.96 (d, $J_{CF} = 21$ Hz), 94.77, 47.25, 35.43; ESI HRMS: calcd. For C₂₃H₁₇FO₃+Na 383.1059, found 383.1060.

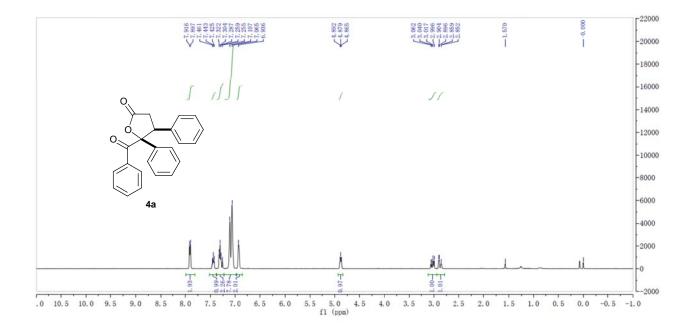
4q was obtained as a white solid in 63% yield for two steps after flash **a** white solid in 63% yield for two steps after flash **b b b c** hromatography. The dr value was calculated to be 84:16 by ¹H NMR **b a** analysis of the crude reaction mixture. m.p. 158-160 °C; ¹H NMR (400 MHz, **c** DCl₃): $\delta = 7.94$ (d, J = 8.8 Hz, 2H), 7.90 (d, J = 7.6 Hz, 2H), 7.49-7.46 (m, 1H), 7.35-7.31 (m, 2H), 7.16-7.11 (m, 5H), 7.04-7.03 (m, 2H), 5.02-4.99 (m, 1H), 3.09 (dd, $J_1 = 18.0$ Hz, $J_2 = 8.4$ Hz, 1H), 2.89 (dd, $J_1 = 18.0$ Hz, $J_2 = 6.4$ Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.64$, 174.08, 146.97, 144.81, 134.69, 133.78, 133.11, 131.00, 129.81, 128.93, 128.87, 128.39, 124.46, 123.16, 94.42, 47.70, 35.10 ppm; ESI HRMS: calcd. For C₂₃H₁₇NO₅+Na 410.1004, found 410.1009.

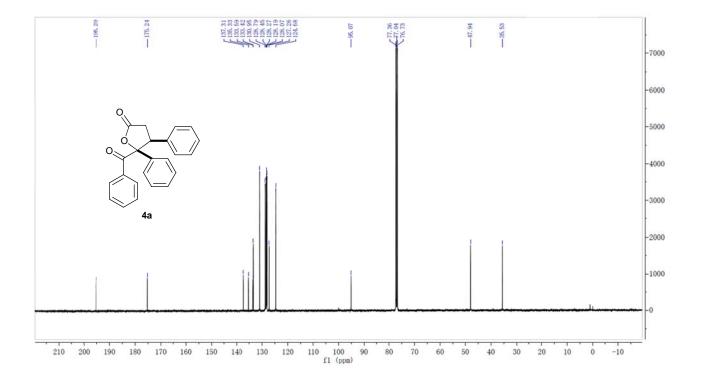

4r was obtained as a white solid in 54% yield for two steps after flash chromatography. The dr value was calculated to be 80:20 by ¹H NMR analysis of the crude reaction mixture. m.p. 99-100 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.90$ (d, J = 7.6 Hz, 2H), 7.45-7.41 (m, 1H), 7.31-7.27 (m, 2H), 7.12-7.11 (m, 3H), 7.07-7.06 (m, 2H), 6.87 (d, J = 8.0 Hz, 2H), 6.81 (d, J = 8.0 Hz, 2H), 4.83 (t, J = 7.2 Hz, 1H), 2.99 (dd, $J_I = 17.6$ Hz, $J_2 = 8.4$ Hz, 1H), 2.84 (dd, $J_I = 18.0$ Hz, $J_2 = 6.0$ Hz, 1H), 2.19 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 195.40$, 175.32, 136.91, 135.38, 134.15, 133.78, 133.36, 130.92, 128.74, 128.66, 128.44, 128.25, 128.17, 124.76, 95.06, 47.68, 35.64, 20.96 ppm; ESI HRMS: calcd. For C₂₄H₂₀O₃+Na 379.1310, found 379.1315.

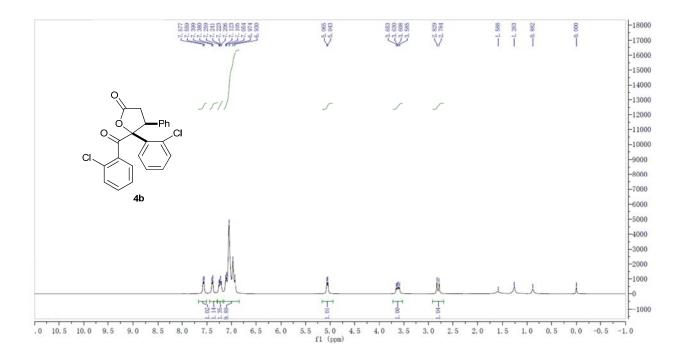

4s was obtained as a white solid in 50% yield for two steps after flash chromatography. The dr value was calculated to be 87:13 by ¹H NMR analysis of the crude reaction mixture. m.p. 89-90 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.94$ (d, J = 7.6 Hz, 2H), 7.46-7.42 (m, 1H), 7.32-7.29 (m, 2H), 7.23-7.21 (m, 2H), 7.07-7.00 (m, 5H), 6.74-6.70 (m, 1H), 6.50-6.48 (m, 1H), 5.22 (d, J = 9.6 Hz, 1H), 3.64 (s, 3H), 2.98 (dd, $J_I = 18.0$ Hz, $J_2 = 10.0$ Hz, 1H), 2.83 (dd, $J_I = 17.6$ Hz, $J_2 = 1.2$ Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 195.59$, 176.22, 156.91, 135.81, 133.70, 133.22, 131.03, 130.88, 128.72, 128.19, 127.73, 127.69, 127.09, 124.57, 120.14, 110.11, 95.68, 54.29, 44.66, 35.39 ppm; ESI HRMS: calcd. For C₂₄H₂₀O₄+Na 395.1259, found 395.1263.

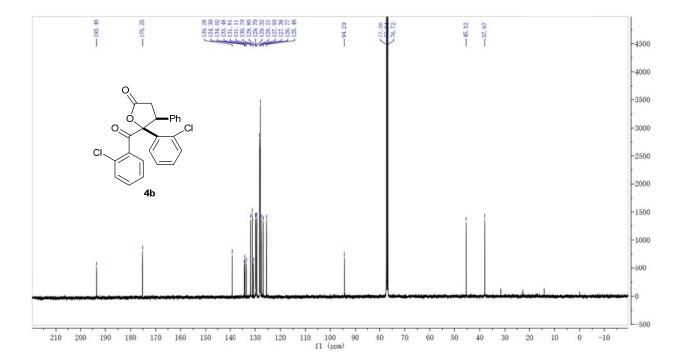
4t was obtained as a white solid in 35% yield for two steps after flash chromatography. The dr value was calculated to be 80:20 by ¹H NMR analysis of the crude reaction mixture. m.p. 102-104 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.91$ (d, J = 6.4 Hz, 2H), 7.46 (br s, 1H), 7.32-7.26 (m, 3H), 7.19 (br s, 5H), 7.07 (br s, 1H), 6.08 (s, 1H), 6.01 (s, 1H), 4.94 (br s, 1H), 2.94 (br s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.64$, 174.49, 150.44, 142.14, 135.45, 133.57, 133.24, 131.01, 128.56, 128.34, 128.31, 124.03, 110.17, 108.94, 94.14, 42.59, 33.26 ppm; ESI HRMS: calcd. For C₂₁H₁₆O₄+Na 355.0946, found 355.0943.

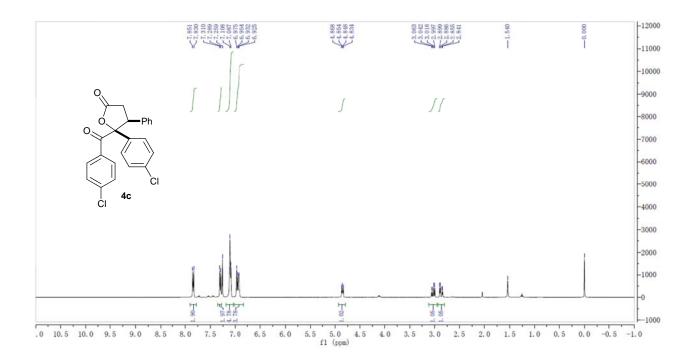
5a was obtained as a white solid in 87% yield for two steps after flash chromatography. m.p. 104-106 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.98$ (d, J = 7.2 Hz, 2H), 7.78 (d, J = 16.0 Hz, 1H), 7.52 (br s, 5H), 7.43-7.38 (m, 7H), 7.25 (s, 1H), 7.01(s, 1H), 6.60 (d, J = 16.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.83$, 166.32, 146.21, 134.71, 134.27, 133.78, 133.52, 130.53, 129.37, 129.19, 128.91, 128.88, 128.78, 128.68, 128.28, 117.14, 77.65 ppm; ESI HRMS: calcd. For C₂₃H₁₈O₃+Na 365.1154, found 365.1151.


3. Crystal data of 4a






Empirical formula	$C_{23}H_{18}O_3$
Formula weight	342.37
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P2 ₁
a/Å	6.7969(3)
b/Å	14.0639(6)
c/Å	9.4194(4)
$\alpha/^{\circ}$	90.00
β/°	96.811(5)
$\gamma/^{\circ}$	90.00
Volume/Å ³	894.05(7)
Z	2
$\rho_{calc} mg/mm^3$	1.272
m/mm ⁻¹	0.669
F(000)	360.0
Crystal size/mm ³	$0.3\times0.3\times0.02$
2Θ range for data collection	9.46 to 134.48°
Index ranges	$-5 \le h \le 8, -16 \le k \le 14, -11 \le l \le 11$
Reflections collected	5229
Independent reflections	2737[R(int) = 0.0221]
Data/restraints/parameters	2737/1/236
Goodness-of-fit on F ²	1.096
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0317, wR_2 = 0.0877$
Final R indexes [all data]	$R_1 = 0.0333, wR_2 = 0.0894$
Largest diff. peak/hole / e Å ⁻³ 0.15/-0.13	


4. NMR spectra

