Supporting Information

Ultrathin Porous Nickel-Cobalt Hydroxide Nanosheets for High-Performance Supercapacitor Electrodes

Xiaoting Zheng, Zhengxiang Gu, Qingqing Hu, Baoyou Geng, Xiaojun Zhang*

Key Laboratory for Functional Molecular Solids of the Education Ministry of China,

College of Chemistry and Materials Science, Center for Nano Science and

Technology, Anhui Normal University, Wuhu, 241000, P R China.

Fax: +86-553-3869302; Tel: +86-553-3869303; E-mail: xjzhang@mail.ahnu.edu.cn

Figure S1 Photograph of bare nickel sheet (a) and nickel-cobalt hydroxide nanosheets/nickel sheet (b) which used as working electrode.

Figure S2 SEM images and EDX spectrum of pure Ni(OH)₂ (a,b) and pure Co(OH)₂ (c,d).

Figure S3 SEM images of the $Co_{0.66}Ni_{0.33}(OH)_2$ nanosheets with different reaction times: (a) 2h, (b) 4h, (c) 8h, (d) 12h.

Figure S4 CV curves obtained at different scan rates and galvanostatic chargedischarge curves obtained at different current densities for the sample pure $Ni(OH)_2$ (a,b) and pure $Co(OH)_2$ (c,d).

Figure S5 Comparison of Nyquist plots of Ni-Co LDH hybrid-, nickel hydroxide-, and cobalt hydroxide- based electrodes.

Туре	Preparation Method	Electrolyte	Measurement Protocol	Maximum	
				Capacitance	Ref. (year)
				(F g ⁻¹)	
NiAl LDH on Ni foam	Hydrothermal	6 M KOH	10 mA cm ⁻²	701	[1] (2010)
GO/CoAl LDH	Hydrothermal	1 M KOH	1 A g ⁻¹	1031	[2] (2011)
NiCo LDHs/Zn ₂ SnO ₄	Electrodepositon	2M KOH	0.5A g ⁻¹	1805	[3] (2012)
Hollow NiAl LDH	Hydrothermal	1 M KOH	2 A g ⁻¹	735	[4] (2012)
CoAl LDH/GO	Hydrothermal	6 M KOH	1 A g ⁻¹	772	[5] (2012)
NiAl LDH/a-GNS	Hydrothermal	6 M KOH	0.1A g ⁻¹	1730.2	[6] (2013)
Co _{1-x} Ni _x LDHs	Electrodepositon	2 M KOH	5 mV s ⁻¹	1213	[7] (2013)
MWCNT/NiCoAl	Simple Refluxing	6 M KOH	1 A g ⁻¹	1035	[8] (2013)
LDH					
graphene sheets/NiCo	Microwave synthesis	6M KOH	1A g ⁻¹	1980	[9] (2013)
LDH					
CoAl LDH@Ni(OH)2	Hydrothermal &	2 М КОН	5 mA cm ⁻²	1528	[10] (2014)
	Electrodepositon				
graphene/NiAl LDH	Hydrothermal	ЗМ КОН	2A g ⁻¹	915	[11] (2014)
NiAl LDH on Ni foam	CBD &	1 M KOH	0.5 A g ⁻¹	795	[12] (2014)
	Hydrothermal				
rGO/N1 _{0.83} Co _{0.17} AI	Hydrothermal	6М КОН	1A g ⁻¹	1902	[13] (2014)
LDH					
NICo LDH on metal	Hydrothermal	1M KOH	1A g ⁻¹	2184	This work
nıckel					

Table S1 Comparison of the maximum Cs based on LDH hybrid materials based

 pseudocapacitive materials and as-prepared electrode materials.

References

[1] J. Wang, Y. Song, Z. Li, Q. Liu, J. Zhou, X. Jing, M. Zhang, Z. Jiang, Energy & Fuels. 2010, 24, 6463-6467.

[2] L. Wang, D. Wang, X.Y. Dong, Z. J. Zhang, X.F. Pei, X.J. Chen, B. Chen, J. Jin, Chem Commun. 2011, 47, 3556-3558.

[3] X. Wang, A. Sumboja, M. Lin, J. Yan, P. S. Lee, Nanoscale. 2012, 4, 7266.

[4] M. Shao, F. Ning, Y. Zhao, J. Zhao, M. Wei, D.G. Evans, X. Duan, Chem. Mater. 2012, 24, 1192-1197.

[5] J. Fang, M. Li, Q. Li, W. Zhang, Q. Shou, F. Liu, X. Zhang, J. Cheng, Electrochim. Acta. 2012, 85, 248-255.

[6] N. Yulian, L. Ruiyi, L. Zaijun, F. Yinjun, L. Junkang, Electrochim. Acta. 2013, 94, 360-366.

[7] S.B. Kulkarni, A.D. Jagadale, V.S. Kumbhar, R.N. Bulakhe, S.S. Joshi, C.D. Lokhande, Int. J. Hydrogen Energy. 2013, 38, 4046-4053.

[8] J. Yang, C.Yu, X. Fan, Z. Ling, J. Qiu, Y. Gogotsi, J. Mater. Chem. A. 2013, 1, 1963.

[9] Yan Tao, Li Ruiyi, Li Zaijun, Materials Research Bulletin. 2014, 51, 97-104.

[10] Wei Honga, Jinqing Wang, Lengyuan Niu, Jinfeng Sun, Peiwei Gong, Shengrong Yang, Journal of Alloys and Compounds. 2014, 608, 297–303.

[11] Yasodinee Wimalasiria, Rong Fan, X.S. Zhao, Linda Zou, Electrochimica Acta.2014, 134, 127–135.

[12] B. Wang, Q. Liu, Z.Y. Qian, X.F. Zhang, J. Wang, Z.S. Li, H.J. Yan, Z. Gao, F.B.Zhao, L.H. Liu, J. Power Sources. 2014, 246, 747-753.

[13] Jie Xu, Shili Gai, Fei He, Na Niu, Peng Gao, Yujin Chen, Piaoping Yang, Dalton Trans. 2014, 43, 11667–11675.

Figure S6 SEM images of $Co_{0.66}Ni_{0.33}(OH)_2$ electrode before (a) and after (b) 2000th

asymmetric supercapacitor at different current densities; (b) specific capacitance vs. scan rate of the $Co_{0.66}Ni_{0.33}(OH)_2//AC$ asymmetric supercapacitor; (c) energy density vs. power density curves of the $Co_{0.66}Ni_{0.33}(OH)_2//AC$ asymmetric supercapacitor; (d) cycling performance of the $Co_{0.66}Ni_{0.33}(OH)_2//AC$ asymmetric supercapacitor at the current density of 1A g⁻¹.