Electronic Supporting Information

Synthesis and anion binding studies of tris(3-aminopropyl)aminebased tripodal urea and thiourea receptors: Proton transferinduced selectivity for hydrogen sulfate over sulfate

Maryam Emami Khansari,^a Corey R. Johnson,^a Ismet Basaran,^{a,b} Aemal Nafis,^a Jing Wang^a, Jerzy Leszczynski^{a*} and Md. Alamgir Hossain^{a*}

^aDept. of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA ^bDept. of Chemistry, Balikesir University, 10145, Balikesir, Turkey

*Email: alamgir.hossain@jsums.edu

Table of Contents:

1.	Characterization of the receptors	Figure S1-S7
2.	¹ H NMR titration spectra and binding isotherms	Figure S8-S29
3.	Job's Plots	Figure S30-S35
4.	2D NOESY NMR spectra	Figure S36-S55
5.	Fluoride extraction studies	Figure S56-S58

1. Characterization of the ligands

Figure S1. ¹H NMR spectra of L1 in DMSO- d_6 .

Figure S2.¹³C NMR spectra of L1 in DMSO- d_6 .

Figure S3.Mass spectra of L1

Figure S4. ¹H NMR spectra of L2 in DMSO- d_6 .

Figure S5.¹³C NMR spectra of L2 in DMSO- d_6 .

Figure S6. Mass spectra of L2

Figure S7. FT-IR spectra of L2 in KBr.

2.¹H NMR Titrations

Figure S8. (a) Partial ¹H NMR spectra of L1 (2mM) with an increasing amount of *n*-TBAF ($R = [F^-]/[L1]$) in DMSO-*d*₆ (b) Titration curves of L1 with TBAF showing changes in the chemical shifts of –CH against an increasing amount of anions.

Figure S9. (a) Partial ¹H NMR spectra of L1 (2mM) with an increasing amount of TBACl (R = [TBACl] /[L1]) in DMSO- d_6 (b) Titration curves of L1 with TBACl showing changes in the chemical shifts of NH against the increasing amount of anion. H1 = CON*H*Ar and H2 = CH₂N*H*CO.

Figure S10. (a) Partial ¹H NMR spectra of L1 (2mM) with an increasing amount of TBABr (R = [TBABr] / [L1]) in DMSO-*d*₆. H1 = CONHAr and H2 = CH₂NHCO. (b) Titration curves of L1 with TBABr showing changes in the chemical shifts of NH against the increasing amount of anion. H1 = CONHAr and H2 = CH₂NHCO.

Figure S11. Partial ¹H NMR spectra of L1 (2mM) with an increasing amount of TBAI (R = [TBAI] /[L1]) in DMSO- d_6 . H1 = CONHAr and H2 = CH₂NHCO.

Figure S12. (a) Partial ¹H NMR spectra of L1 (2mM) with an increasing amount of TBAH₂PO₄ (R = [TBAH₂PO₄] /[L1]) in DMSO- d_6 (b) Titration curves of L1 with TBAH₂PO₄ showing changes in the chemical shifts of NH against the increasing amount of anion. H1 = CON*H*Ar and H2 = CH₂N*H*CO.

Figure S13. (a) Partial ¹H NMR spectra of L1 (2mM) with an increasing amount of TBACH₃COO (R = [TBACH₃COO] /[L1]) in DMSO- d_6 (b) Titration curves of L1 with TBACH₃COO showing changes in the chemical shifts of NH against the increasing amount of anion. H1 = CONHAr and H2 = CH₂NHCO.

Figure S14. (a) Partial ¹H NMR spectra of L1 (2mM) with an increasing amount of TBAHSO₄ (R = [TBAHSO₄] /[L1]) in DMSO- d_6 (b) Titration curves of L1 with TBAHSO₄ showing changes in the chemical shifts of NH against the increasing amount of anion. H1 = CONHAr and H2 = CH₂NHCO.

Figure S15. (a) Partial ¹H NMR spectra of L1 (2mM) with an increasing amount of $(TBA)_2SO_4$ (R = $[TBA)_2SO_4$] /[L1]) in DMSO- d_6 (b) Titration curves of L1 with $(TBA)_2SO_4$ showing changes in the chemical shifts of NH against the increasing amount of anion. H1 = CONHAr and H2 = CH₂NHCO.

Figure S16. (a) Partial ¹H NMR spectra of L1 (2mM) with an increasing amount of TEAHCO₃ (R = [TEAHCO₃] /[L1]) in DMSO- d_6 (b) Titration curves of L1 with TEAHCO₃ showing changes in the chemical shifts of NH against the increasing amount of anion. H1 = CONHAr and H2 = CH₂NHCO.

Figure S17. Partial ¹H NMR spectra of L1 (2mM) with an increasing amount of TBANO₃ (R = [TBANO₃] /[L1]) in DMSO- d_6 . H1 = CONHAr and H2 = CH₂NHCO.

Figure S18. Partial ¹H NMR spectra of L1 (2mM) with an increasing amount of TBAClO₄ (R = [TBAClO₄] /[L1]) in DMSO- d_6 . H1 = CONHAr and H2 = CH₂NHCO.

Figure S19. (a) Partial ¹H NMR spectra of L2 (2 mM) with an increasing amount of TBAF (R = [TBAF] / [L2]) in DMSO- d_6 (b) Titration curves of L2 with TBAF showing changes in the chemical shifts of –CH against an increasing amount of anions.

Figure S20. (a) Partial ¹H NMR spectra of L2 (2mM) with an increasing amount of TBACl (R = [TBACl] / [L2]) in DMSO- d_6 (b) Titration curves of L2 with TBACl showing changes in the chemical shifts of NH against the increasing amount of anion. H1 = CSN*H*Ar and H2 = CH₂N*H*CS.

Figure S21. Partial ¹H NMR spectra of L2 (2mM) with an increasing amount of TBABr (R = [TBABr] /[L2]) in DMSO- d_6 . H1 = CSNHAr and H2 = CH₂NHCS.

Figure S22. Partial ¹H NMR spectra of L2 (2mM) with an increasing amount of TBAI (R = [TBAI] /[L2]) in DMSO- d_6 . H1 = CSNHAr and H2 = CH₂NHCS.

Figure S23. (a) Partial ¹H NMR spectra of L2 (2mM) with an increasing amount of TBAH₂PO₄ (R = [TBAH₂PO₄] /[L2]) in DMSO- d_6 (b) Titration curves of L2 with TBAH₂PO₄ showing changes in the chemical shifts of NH against the increasing amount of anion. H1 = CSN*H*Ar and H2 = CH₂N*H*CS.

Figure S24. (a) Partial ¹H NMR spectra of L2 (2mM) with an increasing amount of TBACH₃COO (R = [TBACH₃COO] /[L2]) in DMSO- d_6 (b) Titration curves of L2 with TBACH₃COO showing changes in the chemical shifts of NH against the increasing amount of anion. H1 = CSNHAr and H2 = CH₂NHCS.

Figure S25. (a) Partial ¹H NMR spectra of **L2** (2mM) with an increasing amount of TBAHSO₄ (R = [TBAHSO₄] /[**L2**]) in DMSO- d_6 (b) Titration curves of **L2** with TBAHSO₄ showing changes in the chemical shifts of NH against the increasing amount of anion. H1 = CSNHAr and H2 = CH₂NHCS.

Figure S26. (a) Partial ¹H NMR spectra of L2 (2mM) with an increasing amount of $(TBA)_2SO_4$ (R = $[TBA)_2SO_4$] /[L2]) in DMSO- d_6 (b) Titration curves of L2 with $(TBA)_2SO_4$ showing changes in the chemical shifts of NH against the increasing amount of anion. H1 = CONHAr and H2 = CH₂NHCO.

Figure S27. (a) Partial ¹H NMR spectra of L2 (2mM) with an increasing amount of TEAHCO₃ (R = [TEAHCO₃] /[L2]) in DMSO- d_6 (b) Titration curves of L2 with TEAHCO₃ showing changes in the chemical shifts of CH against the increasing amount of anion.

Figure S28. Partial ¹H NMR spectra of L2 (2mM) with an increasing amount of TBANO₃ (R = [TBANO₃] /[L2]) in DMSO- d_6 . H1 = CSNHAr and H2 = CH₂NHCS.

Figure S29. Partial ¹H NMR spectra of L2 (2mM) with an increasing amount of TBAClO₄ (R = [TBAClO₄] /[L2]) in DMSO- d_6 . H1 = CSNHAr and H2 = CH₂NHCS.

3. Job's Plots

Figure S30. Job's plot for the formation of the fluoride complex with L1. The chemical shift changes are shown for CHCNH obtained from the ¹H NMR titrations of L1 with F^- .

Figure S31. Job's plot for the formation of the hydrogen sulfate complex with L1. The chemical shift changes are shown for NH1 obtained from the ¹H NMR titrations of L1 with HSO₄⁻.

Figure S32. Job's plot for the formation of the dihydrogen phosphate complex with L1. The chemical shift changes are shown for NH1 obtained from the ¹H NMR titrations of L1 with $H_2PO_4^{-}$.

Figure S33. Job's plot for the formation of the fluoride complex with L2. The chemical shift changes are shown for CHCNH obtained from the ¹H NMR titrations of L2 with F^- .

Figure S34. Job's plot for the formation of the hydrogen sulfate complex with L2. The chemical shift changes are shown for NH1 obtained from the ¹H NMR titrations of L2 with HSO₄⁻.

Figure S35. Job's plot for the formation of the dihydrogen phosphate complex with L2. The chemical shift changes are shown for NH1 obtained from the ¹H NMR titrations of L2 with $H_2PO_4^{-1}$.

4. 2D NOESY NMR experiments

Figure S36. 2D NOESY NMR spectra of TBAF complex of L1 in DMSO- d_6 at room temperature.

Figure S37. 2D NOESY NMR spectra of TBACl complex of L1 in DMSO- d_6 at room temperature.

Figure S38. 2D NOESY NMR spectra of TBABr complex of L1 in DMSO- d_6 at room temperature.

Figure S39. 2D NOESY NMR spectra of TBAI complex of L1 in DMSO- d_6 at room temperature.

Figure S40. 2D NOESY NMR spectra of TBAH₂PO₄ complex of L1 in DMSO- d_6 at room temperature.

Figure S41. 2D NOESY NMR spectra of $ZnSO_4$ complex of L1 in DMSO- d_6 at room temperature.

Figure S42. 2D NOESY NMR spectra of TEAHCO₃ complex of L1 in DMSO- d_6 at room temperature.

Figure S43. 2D NOESY NMR spectra of TBA(CH₃COO) complex of L1 in DMSO- d_6 at room temperature.

Figure S44. 2D NOESY NMR spectra of TBANO₃ complex of L1 in DMSO- d_6 at room temperature.

Figure S45. 2D NOESY NMR spectra of TBAClO₄ complex of L1 in DMSO- d_6 at room temperature.

Figure S46. 2D NOESY NMR spectra of TBAF complex of L2 in DMSO- d_6 at room temperature.

Figure S47. 2D NOESY NMR spectra of TBACl complex of L2 in DMSO- d_6 at room temperature.

Figure S48. 2D NOESY NMR spectra of TBABr complex of L2 in DMSO- d_6 at room temperature.

Figure S49. 2D NOESY NMR spectra of TBAI complex of L2 in DMSO- d_6 at room temperature.

Figure S50. 2D NOESY NMR spectra of TBAH₂PO₄ complex of L2 in DMSO- d_6 at room temperature.

Figure S51. 2D NOESY NMR spectra of $ZnSO_4$ complex of L2 in DMSO- d_6 at room temperature.

Figure S52. 2D NOESY NMR spectra of TEAHCO₃ complex of L2 in DMSO- d_6 at room temperature.

Figure S53. 2D NOESY NMR spectra of TBA(CH₃COO) complex of L2 in DMSO- d_6 at room temperature.

Figure S54. 2D NOESY NMR spectra of TBANO₃ complex of L2 in DMSO- d_6 at room temperature.

Figure S55. 2D NOESY NMR spectra of TBAClO₄ complex of L2 in DMSO- d_6 at room temperature.

4. Fluoride Extraction Studies

Figure S56. ¹H NMR spectra of extracted fluoride-L2 complex in DMSO-*d*₆.

Figure S57. FT-IR spectra of extracted fluoride-L2 complex in KBr.

Figure S58. Comparative ¹H NMR spectra of (a) **L2**, (b) Extracted fluoride complex. Inset shows the expanded partial ¹H NMR spectra of **L2** and the complex.