D-glucose based syntheses of β-hydroxy derivatives of L-glutamic acid, L-glutamine, L-proline and a dihydroxy pyrrolidine alkaloid

K. S. Ajish Kumar*, Subrata Chattopadhyay

Bio-organic Division, Bhabha Atomic Research Centre,

Trombay, Mumbai- 400085

Email: ajish@barc.gov.in

Content

s.no	Title	Page
		no.
1	¹ H NMR spectrum of 4	6
2	¹³ C NMR spectrum of 4	7
3	¹ H NMR spectrum of 5	8
4	¹³ C NMR spectrum of 5	9
5	¹ H NMR spectrum of 6	10
6	¹³ C NMR spectrum of 6	11
7	ESI-MS spectrum of 6	12
8	¹ H NMR spectrum of 7	13
9	¹³ C NMR spectrum of 7	14
10	¹ H NMR spectrum of 8	15
11	¹³ C NMR spectrum of 8	16
12	¹ H NMR spectrum of 9	17
13	¹³ C NMR spectrum of 9	18
14	¹ H NMR spectrum of 10	19
15	¹³ C NMR spectrum of 10	20

16	¹ H NMR spectrum of 11	21
17	¹³ C NMR spectrum of 11	22
18	¹ H NMR spectrum of 12	23
19	¹³ C NMR spectrum of 12	24
20	ESI-MS spectrum of 12	25
21	¹ H NMR spectrum of 13	26
22	¹³ C NMR spectrum of 13	27
22	¹ H NMR spectrum of 14	28
23	¹³ C NMR spectrum of 14	29
24	ESI-MS spectrum of 14	30
25	¹ H NMR spectrum of 1a	31
26	¹³ C NMR spectrum of 1a	32
27	ESI-MS spectrum of 1a	33
28	¹ H NMR spectrum of 15	34
29	¹³ C NMR spectrum of 15	35
30	ESI-MS spectrum of 15	36
31	¹ H NMR spectrum of 16	37
1 1		

32	¹³ C NMR spectrum of 16	38
52	e www.speedum.or.ro	50
33	¹ H NMR spectrum of 17	39
34	¹³ C NMR spectrum of 17	40
35	ESI-MS spectrum of 17	41
36	¹ H NMR spectrum of 18	42
37	¹³ C NMR spectrum of 18	43
38	ESI-MS spectrum of 18	44
39	¹ H NMR spectrum of 19	45
40	¹³ C NMR spectrum of 19	46
41	ESI-MS spectrum of 19	47
42	¹ H NMR spectrum of 20	48
43	¹³ C NMR spectrum of 20	49
44	¹ H NMR spectrum of 1b	50
45	¹³ C NMR spectrum of 1b	51
46	ESI-MS spectrum of 1b	52
47	¹ H NMR spectrum of 21	53
48	¹³ C NMR spectrum of 21	54

49	¹ H NMR spectrum of 22	55
50	¹³ C NMR spectrum of 22	56
51	ESI-MS spectrum of 22	57
52	¹ H NMR spectrum of 23	58
53	¹³ C NMR spectrum of 23	59
54	ESI-MS spectrum of 23	60
55	¹ H NMR spectrum of 24	61
56	¹³ C NMR spectrum of 24	62
57	ESI-MS spectrum of 24	63
58	¹ H NMR spectrum of 1c	64
59	¹³ C NMR spectrum of 1c	65
60	¹ H NMR spectrum of 2	66
61	¹³ C NMR spectrum of 2	67
62	COSY spectrum of 2	68
63	HMQC spectrum of 2	69

Figure 5: ¹H NMR (200 MHz, CDCl₃) spectrum of compound 6

F:\DATA\Aug-2013\12\AKS-4

Figure 8: $^{13}\text{C}\,\text{NMR}$ (50 MHz, CDCI3) spectrum of compound 7

Figure 10: ¹³C NMR (50 MHz, CDCl₃) spectrum of compound 8

Figure 15: 1 H NMR (200 MHz, CDCl₃) spectrum of compound 11

Figure 18: 13 C NMR (50 MHz, CDCl₃) spectrum of compound 12

F:\DATA\Aug-2013\12\AKS-5_130812120830

8/12/2013 12:08:30 PM

Figure 20: ¹³C NMR (50 MHz, CDCI₃) spectrum of Compound 13

F:\DATA\June-2013\25\AKS-9

Figure 24: ¹³C NMR (126 MHz, D₂O) spectrum of Compound 1a

Note: The BBI and TXI probe on which ¹³C NMR (126 MHz) was done, is not optimized for the detection of the ¹³C nucleus, being an inverse probe, it is optimized for ¹H detection, and therefore for weak samples a small hump appears.

10

Print Date: 25 Mar 2014 12:00:58

Spectrum Plot - 3/25/2014 12:00 PM

Figure 26: ¹³C NMR (126 MHz, CDCl₃) spectrum of Compound 15

Note: The BBI and TXI probe on which ¹³C NMR (126 MHz) was done, is not optimized for the detection of the ¹³C nucleus, being an inverse probe, it is optimized for ¹H detection, and therefore for weak samples a small hump appears.

Note: The BBI and TXI probe on which ¹³C NMR (126 MHz) was done, is not optimized for the detection of the ¹³C nucleus, being an inverse probe, it is optimized for ¹H detection, and therefore for weak samples a small hump appears.

Print Date: 25 Mar 2014 12:11:25

Spectrum Plot - 3/25/2014 12:11 PM

Note: The BBI and TXI probe on which ¹³C NMR (126 MHz) was done, is not optimized for the detection of the ¹³C nucleus, being an inverse probe, it is optimized for ¹H detection, and therefore for weak samples a small hump appears.

Figure 37: ¹H NMR (500 MHz, D₂O) spectrum of Compound 1b

MAN ANY ANY 120 110 100 f1 (ppm) Figure 38: ¹³C NMR (126 MHz, D₂O) spectrum of Compound 1b

Note: The BBI and TXI probe on which ¹³C NMR (126 MHz) was done, is not optimized for the detection of the ¹³C nucleus, being an inverse probe, it is optimized for ¹H detection, and therefore for weak samples a small hump appears.

---57.13

-65.81

Print Date: 25 Mar 2014 11:59:52

Spectrum Plot - 3/25/2014 11:59 AM

Figure 42: ¹³C NMR (50 MHz, CDCl₃) spectrum of compound 22

F:\DATA\June-2013\27\AKS-12

6/27/2013 12:04:14 PM

Figure 45: 1 H NMR (500 MHz, CDCl₃) spectrum of Compound 24

Note: The BBI and TXI probe on which ¹³C NMR (126 MHz) was done, is not optimized for the detection of the ¹³C nucleus, being an inverse probe, it is optimized for ¹H detection, and therefore for weak samples a small hump appears.

Note: The BBI and TXI probe on which ¹³C NMR (126 MHz) was done, is not optimized for the detection of the ¹³C nucleus, being an inverse probe, it is optimized for ¹H detection, and therefore for weak samples a small hump appears.

Note: The BBI and TXI probe on which ¹³C NMR (126 MHz) was done, is not optimized for the detection of the ¹³C nucleus, being an inverse probe, it is optimized for ¹H detection, and therefore for weak samples a small hump appears.

Figure 51: COSY (500 MHz, D2O) spectrum of Compound 2

