Supporting Information

Needle-like CoO Nanowires Grown on Carbon Cloth for Enhanced Electrochemical Properties in Supercapacitors

D. L. Ji,^{*a,b,d*} J. H. Li,^{*c*}* L. M. Chen,^{*a*}* D. Zhang,^{*a*} T. Liu,^{*a*} N. Zhang,^{*b*} R. Z. Ma,^{*b*} G.

Z. Qiu^a and X. H. Liu^{a,b,d*}

^{*a*} Department of Inorganic Materials, Central South University, Changsha, Hunan 410083, P. R. China.

E-mail: liuxh@csu.edu.cn; chenlimiao@csu.edu.cn

^b School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China.

^c State Key Laboratory of High Performance Complex Manufacturing, School of Mechanical and Electronical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.

E-mail: lijunhui@csu.edu.cn

^{*d*} Institute for Materials Microstructure, Central South University, Changsha, Hunan 410083, P. R. China.

Experimental Section

All the chemicals were of analytical grade and were used without further purification. Before using, commercially available Carbon Cloth (CC, ca. 1 cm \times 10 cm) was cut into the appropriate size, cleaned by ultrasonication with ethanol and distilled water several times, and then dried in an oven at 60 °C for 2 h.

Materials Synthesis. In a typical process, 2 mmol of $Co(NO_3)_2 \cdot 6H_2O$, 4 mmol of NH₄F, 10 mmol of urea were dissolved in 35 mL deionized water under magnetically stirring for 30 min. The solution was transferred into a 40 mL

Teflon-lined stainless steel autoclave. Then, a piece of the pre-treated CC was vertically immersed in above solution. Hydrothermal synthesis was carried out at 100 °C for 12 h. After cooling to room temperature naturally, the precursor was ultrasonically cleaned for several times with deionized water and ethanol, dried at 60 °C for 2 h. Finally, the precursor could be completely converted into needle-like CoO or Co₃O₄ nanowires supported on the CC by heat treatment at 450 °C in high-purity Ar gas ambient or at 350 °C in air for 2 h, respectively. The mass loading of the CoO and Co₃O₄ nanowires on CC was around 1.9 and 2 mg cm⁻², respectively. Lamellar precursor could be prepared with the absence of NH₄F during the hydrothermal process, which could be more readily calcined into rectangular CoO nanosheets supported on the CC at 450 °C for 2 h under argon flow. The mass loading of the CoO microspheres could be obtained without use of carbon cloth during the synthetic process.

Materials Characterization. The crystal structure of as-synthesized products were determined by X-ray diffraction (XRD) using a D/max2550 VB + X-ray diffractometer with Cu Ka radiation ($\lambda = 1.5418$ Å). The morphology and microstructures were characterized using field-emission scanning electron microscopy (FESEM; JEOL JSM-6700F, 5 kV), and transmission electron microscopy (TEM; JEOL, JEM-2010 HT).

Electrochemical measurements. The needle-like CoO nanowires/CC, Co3O4 nanowires/CC and CoO nanosheets/CC hybrd structures (~1 cm² in area) were directly acted as the working electrode without any ancillary materials. For electrochemical measurements of nanowire-assembled CoO microspheres, the working electrode is consisted of active material, carbon black, and polymer binder (polyvinylidene fluoride; PVDF) in a weight ratio of 80:10:10. The slurry was pasted to Ni foam and then dried at 120 °C overnight under vacuum. Electrodes were tested on interface 1000 Electrochemical Workstation in a three-electrode electrochemical cell using a 2 M KOH aqueous solution as electrolyte at room temperature. Ag/AgCl electrode and Pt wire were used as

reference and counter electrode, respectively. The specific capacitance is calculated according to the following equations: $C = I\Delta t/m\Delta V$, where *I* is charge-discharge current, Δt is the time for a full discharge, *m* indicates the mass of the active material, and ΔV represents the voltage change after a full discharge.

Scheme S1 The process for the fabrication of cobalt oxides supported on the CC.

Fig. S1 (A) XRD pattern of needle-like precursor scratched from the CC. (B) Highmagnification SEM image of needle-like precursor supported on the CC.

Fig. S2 SEM images of the carbon textiles.

Fig. S3. XRD pattern of (i) Co₃O₄ nanowires/CC, (ii) CoO nanosheets/CC, and (iii) nanowire-assembled CoO microspheres.