Supporting information

Selective Dehydration of Sorbitol to 1,4-anhydro-D-sorbitol

Catalyzed by Polymer-supported Acid Catalyst

Yuhe Xiu, Angjun Chen, Xuerui Liu, Chen Chen, Jizhong Chen, Li Guo, Ran Zhang, Zhenshan Hou*

Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, P. R. China.

Entry	Catalysts	C‰a	H‰a	N‰ª	S% ^b	Si% ^b
1	SO ₃ H-PS-SO ₃ H	35.8(34.2)	5.4(5.5)	6.7(6.8)	11.4(11.2)	5.0(5.1)
2	SO ₃ H-PS-SO ₃ H ^c	35.7	5.4	6.7	11.3	5.0
3	0.3SO ₃ H-PS-0.3SO ₃ H	43.9(42.7)	7.3(7.5)	5.6(5.4)	4.4(4.6)	8.6(8.7)
4	0.6SO ₃ H-PS-0.6SO ₃ H	43.0(43.5)	6.6(6.5)	5.6(5.7)	7.2(7.3)	7.1(7.0)
5	2SO ₃ H-PS-2SO ₃ H	41.2(40.8)	5.4(5.3)	5.7(5.7)	12.9(13.1)	3.8(3.7)
6	3SO ₃ H-PS-3SO ₃ H	40.4(40.6)	5.1(5.4)	5.6(5.8)	14.5(14.1)	2.9(2.8)
7	SO ₃ H-PS	39.1(39.5)	5.5(5.3)	5.4(5.5)	10.8(11.1)	5.6(5.6)
8	SO ₃ H-PS ^c	40.1	5.5	5.4	6.4	5.8
9	PS-SO ₃ H	31.6(32.2)	5.5(5.5)	9.2(9.4)	10.7(10.9)	4.8(4.7)
10	PS-SO ₃ H ^c	32.6	5.6	10.2	6.4	4.9

Table 1S. The composition of the polymer catalysts.

^aDetermined by elemental analysis, ^bDetermined by ICP-AES, ^c The catalyst was recycled five times in sorbitol dehydration. The values in the parathesis refer to calculated results.

Catalysts	BET surface areas (m ² •g ⁻¹)
SO ₃ H-PS-SO ₃ H	29.47
0.3SO ₃ H-PS-0.3SO ₃ H	25.81
0.6SO ₃ H-PS-0.6SO ₃ H	27.49
2SO ₃ H-PS-2SO ₃ H	35.42
3SO ₃ H-PS-3SO ₃ H	42.85
SO ₃ H-PS	28.48
PS-SO ₃ H	28.36
Amberlyst-15	45

Table 2S The BET surface area of various catalysts.

Fig. 1S Thermogravimetric analysis (TGA) curves of polymer-based catalysts. A) SO₃H-P-SO₃H, (B) P-SO₃H and (C) SO₃H-P. Curve (a) represented fresh catalyst and curve (b) the catalysts after the fifth runs.

Fig. 2S N₂ sorption isotherms of a) PS-SO₃H, b) SO₃H-PS and c) SO₃H-PS-SO₃H.

Fig. 3S Water contact angle over a) PS-SO₃H, b) SO₃H-PS and c) SO₃H-PS-SO₃H. catalyst.

Fig. 4S Time courses of sorbitol dehydration in solvent free system using SO₃H-PS-SO₃H at various temperatures. (a) 120 °C, (b) 130 °C, (c) 140 °C, (d) 150 °C. Reaction condition: sorbitol (1.65 mmol), catalyst: SO₃H-PS-SO₃H (acid amounts: 0.27 mmol).

Fig. 5S Recyclability of the catalysts in sorbitol dehydration. A) PS-SO₃H and B) SO₃H-PS. Reaction condition: 150 °C, 4 h, 1.65 mmol sorbitol, 0.27 mmol catalyst. The selectivity of 1,4-anhydro-D-sorbitol are both more than 90%.

Derivatization of sorbitol dehydration products for GC-MS

Derivatization of sorbitol dehydration products was performed in a 25 mL roundbottomed with single neck flask. 0.5 g sorbitol products was introduced into the flask. Subsequently, 1 ml anhydrous pyridine and 1 ml acetic anhydride were added into single-neck flask. Then, the reactor was heated to 90 °C for 20 min. After the reaction, the reactor was cooled to room temperature. The derivatives products were analyzed by GC-MS [Agilent 6890/5973 GC-MS equipped with the HP-5MS column (30 m × $0.25 \text{ mm} \times 0.25 \text{ mm}$)].

Retention time/min

Fig. 6S GC-MS spectrum for an acetylated mixture obtained from sorbitol dehydration (433 K, 4 h)

Fig. 7S MS spectra for A) acetylated isosorbide, B) acetylated 1,4-anhydro-Dsorbitol, C) acetylated 1,5-anhydro-D-sorbitol and D)acetylated sorbitol obtained from sorbitol dehydration.