SI 1

# **Electronic Supplementary Information (ESI)**

# Synthesis of ferrocene-containing six-membered cyclic ureas via α-ferrocenyl carbocations

Aleksandra Minić,<sup>a</sup> Dragana Stevanović,<sup>a</sup> Ivan Damljanović, <sup>a</sup> Anka Pejović,<sup>a</sup> Mirjana Vukićević,<sup>b</sup> Goran A. Bogdanović,<sup>c</sup> Niko S. Radulović,<sup>d</sup> Rastko D. Vukićević,<sup>\*a</sup>

<sup>a</sup>Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia
<sup>b</sup>Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
<sup>c</sup>Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia
<sup>d</sup>Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia.

## **Table of Contents**

| Figure S1                                                                            | SI 2  |
|--------------------------------------------------------------------------------------|-------|
| Figure S1                                                                            | SI 3  |
| Synthetic procedures                                                                 | SI 4  |
| General information                                                                  | SI 4  |
| Acryloylferrocene (6) and 2-ferrocenoylethyl aryl amines (8a-q)                      | SI 4  |
| 1-Aryl-4-ferrocenyl-3-phenyltetrahydropyrimidin-2(1 <i>H</i> )-ones ( <b>12a-q</b> ) | SI 5  |
| 4-Ferrocenyl-1,2,3,4-tetrahydroquinoline (10)                                        | SI 14 |
| References                                                                           | SI 14 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectra of the new compounds                  | SI 15 |
|                                                                                      |       |



Figure S1 Expansions of 1H NMR spectra of 12b (up) and 12d (down)



**Figure S2** A representation of a part of the structure of compound **12e** (produced using atomic coordinates from the crystal structure of the same compound) illustrating hindered rotation around the C-N bond. The presented conformations were obtained by rotation of two rings around C-N bond. This figure illustrates strong H...H and O...H steric hindrance (distances are given in green color) between the two rings when they adopt an approximately coplanar orientation.



### **Synthetic procedures**

#### **General information**

All chemicals were commercially available and used as received, except that the solvents were purified by distillation. Ultrasonic cleaner Elmasonic S 10 (Elma, Germany), 30 W, was used for the ultrasonically supported synthesis. Chromatographic separations were carried out using silica gel 60 (Merck, 230–400 mesh ASTM), whereas silica gel 60 on Al plates, layer thickness 0.2 mm (Merck) was used for TLC. Melting points (uncorrected) were determined on a Mel-Temp capillary melting points apparatus, model 1001. The <sup>1</sup>H and <sup>13</sup>C NMR spectra of the samples in CDCl<sub>3</sub> were recorded on a Varian Gemini (200 MHz) or a Bruker Avance III 400 MHz (<sup>1</sup>H at 400 MHz, <sup>13</sup>C at 101 MHz) NMR spectrometer. Chemical shifts are expressed in ppm ( $\delta$ ) using tetramethylsilane as the internal standard. Coupling constants are reported in Hz. IR measurements were carried out with a Perkin–Elmer FTIR 31725-X spectrophotometer. Microanalyses of carbon, hydrogen and nitrogen were carried out with a Carlo Erba 1106 model microanalyzer.

#### Acryloylferrocene (6) and 2-ferrocenoylethyl aryl amines (8a-q)

Acryloylferrocene (6) and 2-ferrocenoylethyl aryl amines (8a-q) were synthesized according to previously described procedures.<sup>1,2</sup> The spectra of compounds 6 and 8a-k agreed completely with those previously published.<sup>1,2</sup> The spectra of the unknown Mannich bases (8l-q) are presented below.

**3-((2-Bromophenyl)amino)-1-ferrocenylpropan-1-one (8I)**. Yield (74%), mp. 114 °C; IR (KBr, v, cm<sup>-1</sup>): 3409, 3096, 2918, 1674,1599, 1587, 1501, 1452, 1254, 1017, 821, 750; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.42 (dd, J = 7.8, 1.5 Hz, 1H, H-3'), 7.21 (ddd, J = 8.2, 7.4, 1.5 Hz, 1H, H-5'), 6.73 (dd, J = 8.2, 1.5 Hz, 1H, H-6'), 6.57 (ddd, J = 7.8, 7.4, 1.5 Hz, 1H, H-4'), 4.81 – 4.76 (m, 3H, NH and 2 × CH, C<sub>5</sub>H<sub>4</sub>), 4.51 (pseudo t, J = 2.0 Hz, 2H, 2 × CH, C<sub>5</sub>H<sub>4</sub>), 4.13 (s, 5H, 5 × CH, C<sub>5</sub>H<sub>5</sub>), 3.63 (pseudo q, J = 5.9 Hz, 2H, -CH<sub>2</sub>NH-), 3.04 (t, J = 6.2 Hz, 2H, -COCH<sub>2</sub>-); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  202.7 (C=O), 144.6 (C-1'), 132.7 (C-3'), 128.5 (C-5'), 117.9 (C-4'), 111.1 (C-6'), 110.1 (C-2'), 78.7 (C-1"), 72.5 (C-3", 4"), 69.8 (C-6"), 69.3 (C-2", 5"), 38.4 (-CH<sub>2</sub>NH-), 38.2 (-COCH<sub>2</sub>-). Anal. Calcd for C<sub>19</sub>H<sub>18</sub>BrFeNO: C, 55.38; H, 4.40; Br, 19.39; Fe, 13.55; N, 3.40; O, 3.88%. Found: C, 55.31, H, 4.39, N, 3.39%.

**3-((3-Bromophenyl)amino)-1-ferrocenylpropan-1-one (8m)**. Yield (88%), mp. 121 °C; IR (KBr, v, cm<sup>-1</sup>): 3347, 3087, 2928, 1653, 1593, 1482, 1455, 1273, 823, 757; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.05 – 6.98 (m, 1H, H-5'), 6.83 – 6.76 (m, 2H, H-2', 6'), 6.55 (ddd, *J* = 8.2, 2.1, 1.1 Hz, 1H, H-4'), 4.77 (pseudo t, *J* = 2.0 Hz, 2H, 2 × CH, C<sub>5</sub>H<sub>4</sub>), 4.51 (pseudo t, *J* = 2.0 Hz, 2H, 2 × CH, C<sub>5</sub>H<sub>4</sub>), 4.36 – 4.29 (m, 1H, NH), 4.12 (s, 5H, 5 × CH, C<sub>5</sub>H<sub>5</sub>), 3.54 (pseudo q, *J* = 5.9 Hz, 2H, -CH<sub>2</sub>NH-), 3.00 (t, *J* = 6.0 Hz, 2H, -COCH<sub>2</sub>-); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  203.2 (C=O), 149.1 (C-1'), 130.6 (C-5'), 123.4 (C-3'), 120.2 (C-6'), 115.2 (C-2'), 112.0 (C-4'), 78.7 (C-1''), 72.5 (C-3'',4''), 69.9 (C-6''), 69.2 (C-2'', 5''), 38.5 (-CH<sub>2</sub>NH-), 37.9 (-COCH<sub>2</sub>-). Anal. Calcd for C<sub>19</sub>H<sub>18</sub>BrFeNO: C, 55.38; H, 4.40; Br, 19.39; Fe, 13.55; N, 3.40; O, 3.88%. Found: C, 55.40, H, 4.40, N, 3.41%.

**3-((4-Bromophenyl)amino)-1-ferrocenylpropan-1-one (8n)**. Yield (82%), mp. 105 °C; IR (KBr, v, cm<sup>-1</sup>): 3346, 3090, 2946, 2898, 1654, 1593, 1509, 1486, 1459, 1274, 1065, 821; <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>)  $\delta$  7.31 – 7.21 (m, **AA'MM'**, 2H, C<sub>6</sub>H<sub>4</sub>), 6.58 – 6.47 (m, AA'**MM'**, 2H,

C<sub>6</sub>H<sub>4</sub>), 4.76 (pseudo t, J = 2.0 Hz, 2H, 2 × CH, C<sub>5</sub>H<sub>4</sub>), 4.51 (pseudo t, J = 2.0 Hz, 2H, 2 × CH, C<sub>5</sub>H<sub>4</sub>), 4.26 (s, 1H, -CH<sub>2</sub>NH-), 4.12 (s, 5H, 5 × CH, C<sub>5</sub>H<sub>5</sub>), 3.53 (br t, J = 5.9 Hz, 2H, -CH<sub>2</sub>NH-), 2.99 (t, J = 6.0 Hz, 2H, -COCH<sub>2</sub>-); <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>)  $\delta$  203.2 (C=O), 146.7 (C<sub>6</sub>H<sub>4</sub>), 132.0 (C<sub>6</sub>H<sub>4</sub>), 114.5(C<sub>6</sub>H<sub>4</sub>), 109.0 (C<sub>6</sub>H<sub>4</sub>), 78.7 (C<sub>5</sub>H<sub>4</sub>), 72.5 (C<sub>5</sub>H<sub>4</sub>), 69.8 (C<sub>5</sub>H<sub>5</sub>), 69.2 (C<sub>5</sub>H<sub>4</sub>), 38.8 (-CH<sub>2</sub>-), 38.0 (-CH<sub>2</sub>-). Anal. Calcd for C<sub>19</sub>H<sub>18</sub>BrFeNO: C, 55.38; H, 4.40; Br, 19.39; Fe, 13.55; N, 3.40; O, 3.88%. Found: C, 55.42, H, 4.39, N, 3.39%.

**1-Ferrocenyl-3-((2-methoxyphenyl)amino)propan-1-one** (**8o**). Yield (76%), mp. 93 °C; IR (KBr, v, cm<sup>-1</sup>): 3426, 3067, 2964, 2927, 1665, 1602, 1510, 1454, 1252, 1220, 1025, 820, 735;<sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>)  $\delta$  6.90 (ddd, J = 7.8, 7.0, 1.7 Hz, 1H, C<sub>6</sub>H<sub>4</sub>), 6.79 – 6.61 (m, 3H, C<sub>6</sub>H<sub>4</sub>), 4.77 (pseudo t, J = 2.0 Hz, 2H, 2 × CH, C<sub>5</sub>H<sub>4</sub>), 4.60 (s, 1H, -CH<sub>2</sub>NH-), 4.49 (pseudo t, J = 2.0 Hz, 2H, 2 × CH, C<sub>5</sub>H<sub>4</sub>), 4.60 (s, 1H, -CH<sub>2</sub>NH-), 3.62 (t, J = 6.3 Hz, 2H, -CH<sub>2</sub>NH-), 3.03 (t, J = 6.3 Hz, 2H, -COCH<sub>2</sub>-); <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>)  $\delta$  202.9 (C=O), 147.1 (C<sub>6</sub>H<sub>4</sub>), 137.6 (C<sub>6</sub>H<sub>4</sub>), 121.2 (C<sub>6</sub>H<sub>4</sub>), 116.5 (C<sub>6</sub>H<sub>4</sub>), 109.6 (2C, C<sub>6</sub>H<sub>4</sub>), 79.0 (C<sub>5</sub>H<sub>4</sub>), 72.3 (C<sub>5</sub>H<sub>4</sub>), 69.8 (C<sub>5</sub>H<sub>5</sub>), 69.2 (C<sub>5</sub>H<sub>4</sub>), 55.3 (-OCH<sub>3</sub>), 38.5 (-CH<sub>2</sub>-), 38.2 (-CH<sub>2</sub>-). Anal. Calcd for C<sub>20</sub>H<sub>21</sub>FeNO<sub>2</sub>: C, 66.13; H, 5.83; Fe, 15.37; N, 3.86; O, 8.81%. Found: C, 66.05, H, 5.82, N, 3.87%.

**1-Ferrocenyl-3-((3-methoxyphenyl)amino)propan-1-one (8p)**. Yield (76%), mp. 130 °C; IR (KBr, v, cm<sup>-1</sup>): 3353, 3091, 2937, 1657, 1614, 1457, 1267, 1161, 825; <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>)  $\delta$  7.08 (t, *J* = 8.0 Hz, 1H, C<sub>6</sub>H<sub>4</sub>), 6.31 – 6.19 (m, 3H, C<sub>6</sub>H<sub>4</sub>), 4.76 (pseudo t, *J* = 1.9 Hz, 2H, 2 × CH, C<sub>5</sub>H<sub>4</sub>), 4.50 (pseudo t, *J* = 1.9 Hz, 2H, 2 × CH, C<sub>5</sub>H<sub>4</sub>), 4.12 (s, 5H, 5 × CH, C<sub>5</sub>H<sub>5</sub>), 3.76 (s, 3H, -OCH<sub>3</sub>), 3.56 (t, *J* = 6.0 Hz, 2H, -CH<sub>2</sub>NH-), 3.02 (t, *J* = 6.0 Hz, 2H, -COCH<sub>2</sub>-); <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>)  $\delta$  203.4 (C=O), 160.9 (C<sub>6</sub>H<sub>4</sub>), 149.1 (C<sub>6</sub>H<sub>4</sub>), 130.0 (C<sub>6</sub>H<sub>4</sub>), 106.2 (C<sub>6</sub>H<sub>4</sub>), 102.7 (C<sub>6</sub>H<sub>4</sub>), 99.0 (C<sub>6</sub>H<sub>4</sub>), 78.8 (C<sub>5</sub>H<sub>4</sub>), 72.4 (C<sub>5</sub>H<sub>4</sub>), 69.8 (C<sub>5</sub>H<sub>5</sub>), 69.2 (C<sub>5</sub>H<sub>4</sub>), 55.1 (-OCH<sub>3</sub>), 38.7 (-CH<sub>2</sub>-), 38.2 (-CH<sub>2</sub>-). Anal. Calcd for C<sub>20</sub>H<sub>21</sub>FeNO<sub>2</sub>: C, 66.13; H, 5.83; Fe, 15.37; N, 3.86; O, 8.81%. Found: C, 66.08, H, 5.82, N, 3.85%.

**1-Ferrocenyl-3-((4-methoxyphenyl)amino)propan-1-one (8q)**. Yield (66%), mp. 97 °C; IR (KBr, v, cm<sup>-1</sup>): 3378, 3084, 2940, 2929, 2832, 1654, 1513, 1451, 1393, 1263, 1236, 1037, 819; <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>)  $\delta$  6.85 – 6.74 (m, **AA'MM'**, 2H, C<sub>6</sub>H<sub>4</sub>), 6.69 – 6.58 (m, AA'**MM'**, 2H, C<sub>6</sub>H<sub>4</sub>), 4.76 (pseudo t, J = 2.0 Hz, 2H, 2 × CH, C<sub>5</sub>H<sub>4</sub>), 4.50 (pseudo t, J = 2.0 Hz, 2H, 2 × CH, C<sub>5</sub>H<sub>4</sub>), 4.13 (s, 5H, 5 × CH, C<sub>5</sub>H<sub>5</sub>), 3.74 (s, 3H, -OCH<sub>3</sub>), 3.52 (t, J = 6.1 Hz, 2H, -C**H**<sub>2</sub>NH-), 3.00 (t, J = 6.1 Hz, 2H, -COC**H**<sub>2</sub>-); <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>)  $\delta$  203.5 (C=O), 152.3 (C<sub>6</sub>H<sub>4</sub>), 141.9 (C<sub>6</sub>H<sub>4</sub>), 115.0 (C<sub>6</sub>H<sub>4</sub>), 114.5 (C<sub>6</sub>H<sub>4</sub>), 78.9 (C<sub>5</sub>H<sub>4</sub>), 72.4 (C<sub>5</sub>H<sub>4</sub>), 69.8 (C<sub>5</sub>H<sub>5</sub>), 69.2 (C<sub>5</sub>H<sub>4</sub>), 55.8 (-OCH<sub>3</sub>), 39.9 (-CH<sub>2</sub>-), 38.3 (-CH<sub>2</sub>-). Anal. Calcd for C<sub>20</sub>H<sub>21</sub>FeNO<sub>2</sub>: C, 66.13; H, 5.83; Fe, 15.37; N, 3.86; O, 8.81%. Found: C, 66.17, H, 5.84, N, 3.86%.

#### 1-Aryl-4-ferrocenyl-3-phenyltetrahydropyrimidin-2(1H)-ones (12a-q)

To a stirred solution of the corresponding Mannich base **8a-q** (1 mmol) in MeOH (20 mL) at room temperature an excess of NaBH<sub>4</sub> was added in several portions (up to 5 mmol) and the progress of the reaction monitored by TLC. After completion of the reaction (*ca.* 2 h), the solvent was distilled off and the residue diluted with water (30 mL). The mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (two 30 mL portions), the collected organic layers washed with water and brine, and dried overnight (anh. Na<sub>2</sub>SO<sub>4</sub>). After evaporation of the solvent, the product (the corresponding aminoalcohol **9a-q**) was mixed (without any purification) with phenyl isocyanate (0.12 mL, 1.1 mmol) in a test tube placed in an ultrasonic cleaner and irradiated for 30 min. Afterwards, 1 mL of acetic acid was added and irradiation continued for additional 1.5 h. The reaction mixture was neutralized with NaHCO<sub>3</sub> (litmus paper) and extracted with  $CH_2Cl_2$  (two 20 mL portions). The combined organic layers were washed with water and dried over anh. Na<sub>2</sub>SO<sub>4</sub>. After the solvent was removed by evaporation, the crude product was purified by column chromatography (SiO<sub>2</sub>; *n*-hexane-EtOAc, 8:2 (v/v)).



Figure S3 Numbering scheme

**4-Ferrocenyl-1,3-diphenyltetrahydropyrimidin-2(1***H***)-one (12a). Yield (78%), mp. 80 °C; IR (KBr, v, cm<sup>-1</sup>): 3089, 2933, 2230, 1639, 1594, 1478, 1427, 130, 1190, 909, 826, 693; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) \delta 7.49 – 7.44 (m, 2H, H-2"), 7.42 – 7.36 (m, 2H, H-3"), 7.33 – 7.28 (m, 4H, H-2', 3'), 7.23 – 7.18 (m, 1H, H-4"), 7.17 – 7.12 (m, 1H, H-4'), 5.20 (pseudo t,** *J* **= 3.7 Hz, 1H, H-4eq), 4.23 (dt,** *J* **= 2.4, 1.3 Hz, 1H, H-5"'), 4.15 (td,** *J* **= 2.4, 1.3 Hz, 1H, H-3"'), 4.11 (td,** *J* **= 2.4, 1.3 Hz, 1H, H-4"'), 4.04 (dt,** *J* **= 2.4, 1.3 Hz, 1H, H-2"'), 3.74 (s, 5H, H-6"'), 3.62 (pseudo td,** *J* **= 11.7, 3.9 Hz, 1H, H-6ax), 3.52 (dddd,** *J* **= 11.5, 4.8, 3.2, 1.0 Hz, 1H, H-6eq), 2.60 (pseudo ddt,** *J* **= 13.0, 12.0, 4.8 Hz, 1H, H-5ax), 2.15 (pseudo dq,** *J* **= 13.0, 3.5 Hz, 1H, H-5eq); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 153.9 (C-2), 143.9 (C-1'), 143.4 (C-1"), 128.5 (C-3'), 128.4 (C-3"'), 128.0 (C-2"), 126.1 (C-4"'), 125.8 (C-2'), 125.5 (C-4'), 88.8 (C-1"'), 68.8 (C-6"'), 68.3 (C-3"'), 68.1 (C-5"''), 66.8 (C-4"''), 64.3 (C-2"'), 58.5 (C-4), 45.6 (C-6), 31.0 (C-5). Anal. Calcd for C<sub>26</sub>H<sub>24</sub>FeN<sub>2</sub>O: C, 71.57; H, 5.54; Fe, 12.80; N, 6.42; O, 3.67%. Found: C, 71.49, H, 5.55, N, 6.40%.** 

| 4-Ferrocenyl-3-phenyl-1-o-tolyltetrahydropyrimidin-2(1H)-one                    | (12b). Yield (83%), mp. 81 | L |
|---------------------------------------------------------------------------------|----------------------------|---|
| °C; IR (KBr, v, cm <sup>-1</sup> ): 3087, 2929, 2362, 2238, 1634, 1481, 1434, 1 | 309, 1191, 1105, 909, 721; |   |

| Hydrogen        | Diastereoisomer I (45%)               | Diastereoisomer II (55%)               |
|-----------------|---------------------------------------|----------------------------------------|
| H-4eq           | 5.29 (pseudo t, $J = 3.5$ Hz)         | 5.25 (pseudo t, $J = 3.4$ Hz)          |
| H-5ax           | $\sim 2.62$ (overlapped)              | 2.57 (pseudo tt , $J = 12.5$ , 4.6 Hz) |
| H-5eq           | 2.16 (pseudo dq, $J = 12.7$ , 3.5 Hz) | 2.12 (pseudo dq, $J = 12.9$ , 3.4 Hz)  |
| H-6ax           | ~ 3.46 (ov                            | verlapped)                             |
| H-6eq           | $\sim 3.42$ (overlapped)              | 3.26-3.19 (m)                          |
| H-2'''          | 4.08-4.06 (m)                         | 4.06-4.03 (m)                          |
| H-3'''          | ~ 4.17 (0)                            | verlapped)                             |
| H-4'''          | 4.14-4.10 (m)                         | 4.16-4.13 (m)                          |
| H-5'''          | 4.35-4.32 (m)                         | 4.38-4.35 (m)                          |
| H-6'''          | 3.74 (s)                              | 3.72 (s)                               |
| H-3'            | ~ 7.19 (0)                            | verlapped)                             |
| H-4'            | ~ 7.09 (0)                            | verlapped)                             |
| H-5'            | ~ 7.18 (0)                            | verlapped)                             |
| H-6'            | ~ 7.16 (0)                            | verlapped)                             |
| H-2"            | 7.54-7                                | .46 (m)                                |
| H-3"            | 7.42-7                                | .35 (m)                                |
| H-4"            | ~ 7.19 (0)                            | verlapped)                             |
| CH <sub>3</sub> | 2.23 (s)                              | 2.24 (s)                               |

Table S1. <sup>1</sup>H NMR data for **12b** 

| Carbon          | Diastereoisomer I (45%) | Diastereoisomer II (55%) |
|-----------------|-------------------------|--------------------------|
| C-2             | 153.4                   | 153.4                    |
| C-4             | 58.7                    | 58.6                     |
| C-5             | 31.0                    | 31.2                     |
| C-6             | 45.7                    | 45.7                     |
| C-1'''          | 88.8                    | 88.8                     |
| C-2'''          | 64.3                    | 64.2                     |
| C-3'''          | 68.3                    | 68.4                     |
| C-4'''          | 66.7                    | 66.8                     |
| C-5'''          | 68.5                    | 67.7                     |
| C-6'''          | 68.8                    | 68.8                     |
| C-1'            | 142.6                   | 142.4                    |
| C-2'            | 136.0                   | 136.4                    |
| C-3'            | ~ 130                   | .7 (overlapped)          |
| C-4'            | 127.3                   | 127.5                    |
| C-5'            | 126.8                   | 126.9                    |
| C-6'            | 127.1                   | 128.3                    |
| C-1"            | 143.5                   | 143.4                    |
| C-2"            | ~ 127                   | .7 (overlapped)          |
| C-3"            | ~ 128                   | .3 (overlapped)          |
| C-4"            | 125.8                   | 125.8                    |
| CH <sub>3</sub> | 18.2                    | 17.6                     |

Anal. Calcd for C<sub>27</sub>H<sub>26</sub>FeN<sub>2</sub>O: C, 72.01; H, 5.82; Fe, 12.40; N, 6.22; O, 3.55%. Found: C, 71.95, H, 5.83, N, 6.21%.

**4-Ferrocenyl-3-phenyl-1***m***-tolyltetrahydropyrimidin-2(1***H***)<b>-one** (**12c**). Yield (86%), mp. 131 °C; IR (KBr, v, cm<sup>-1</sup>): 3042, 2971, 2857, 1646, 1480, 1437, 1313, 1198, 766, 706; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.48 – 7.43 (m, 2H, H-2"), 7.41 – 7.34 (m, 2H, H-3"), 7.22 – 7.16 (m, 2H, H-5' and H-4"), 7.16 – 7.13 (m, 1H, H-2'), 7.08 – 7.04 (m, 1H, H-6'), 6.99 – 6.94 (m, 1H, H-4'), 5.19 (pseudo t, *J* = 3.8 Hz, 1H, H-4eq), 4.23 (dt, *J* = 2.4, 1.2 Hz, 1H, H-5"), 4.15 (td, *J* = 2.4, 1.2 Hz, 1H, H-3"), 4.12 (td, *J* = 2.4, 1.2 Hz, 1H, H-4"), 4.04 (dt, *J* = 2.4, 1.2 Hz, 1H, H-2"), 3.74 (s, 5H, H-6"), 3.61 (pseudo td, *J* = 11.8, 3.9 Hz, 1H, H-6ax), 3.51 (dddd, *J* = 11.9, 11.8, 4.8, 3.3, 1.0 Hz, 1H, H-6eq), 2.59 (dddd, *J* = 13.0, 11.9, 4.8, 3.8 Hz, 1H, H-5ax), 2.30 (s, 3H, CH<sub>3</sub>), 2.15 (pseudo dq, *J* = 13.0, 3.5 Hz, 1H, H-5eq); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  153.9 (C-2), 143.8 (C-1'), 143.5 (C-1"), 138.3 (C-3'), 128.4 (C-5'), 128.3 (C-3"), 128.0 (C-2"), 126.8 (C-2'), 126.3 (C-4'), 126.0 (C-4"), 122.7 (C-6'), 88.9 (C-1"), 68.8 (C-6"), 68.3 (C-3"), 68.2 (C-5"), 66.8 (C-4"), 64.4 (C-2"), 58.6 (C-4), 45.7 (C-6), 31.0 (C-5), 21.3 (CH<sub>3</sub>). Anal. Calcd for C<sub>27</sub>H<sub>26</sub>FeN<sub>2</sub>O: C, 72.01; H, 5.82; Fe, 12.40; N, 6.22; O, 3.55%. Found: C, 72.07, H, 5.81, N, 6.21%.

**4-Ferrocenyl-3-phenyl-1***p***-tolyltetrahydropyrimidin-2(1***H***)-one (12d). Yield (80%), mp. 70 °C; IR (KBr, v, cm<sup>-1</sup>): 3090, 3029, 2923, 2855, 1649, 1513, 1481, 1433, 1303, 1195, 813, 705; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) \delta 7.48 – 7.44 (m, 2H, H-2"), 7.41 – 7.34 (m, 2H, H-3"), 7.21 – 7.14 (m, 3H, H-2' and H-4"), 7.13 – 7.08 (m, 2H, H-3'), 5.18 (pseudo t, J = 3.8 Hz, 1H, H-4eq), 4.23 (dt, J = 2.4, 1.3 Hz, 1H, H-5"), 4.14 (td, J = 2.4, 1.3 Hz, 1H, H-3"), 4.11 (td, J = 2.4, 1.3 Hz, 1H, H-4"), 4.04 (dt, J = 2.4, 1.3 Hz, 1H, H-2"), 3.74 (s, 5H, H-6"), 3.58 (pseudo td, J = 11.8, 3.9 Hz, 1H, H-6ax), 3.49 (dddd, J = 11.5, 4.9, 3.0, 1.0 Hz, 1H, H-6eq), 2.59 (pseudo ddt, J = 12.9, 11.9, 4.8 Hz, 1H, H-5ax), 2.30 (s, 3H, CH<sub>3</sub>), 2.14 (pseudo dq, J = 12.9, 3.5 Hz, 1H, H-5eq); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 154.0 (C-2), 143.6 (C-1"), 141.4 (C-1'), 135.2 (C-4'), 129.2 (C-3'), 128.3 (C-3"), 128.0 (C-2"), 126.0 (C-4"), 125.8 (C-2), 88.9 (C-1""), 68.8 (C-6""), 68.3 (C-3""), 68.2 (C-5""), 66.8 (C-4""), 64.4 (C-2""), 58.6 (C-4), 45.8 (C-6), 31.0 (C-5), 20.9 (CH<sub>3</sub>). Anal. Calcd for C<sub>27</sub>H<sub>26</sub>FeN<sub>2</sub>O: C, 72.01; H, 5.82; Fe, 12.40; N, 6.22; O, 3.55%. Found: C, 71.94, H, 5.82, N, 6.23%.** 

**4-Ferrocenyl-3-phenyl-1-(2,4,6-trimethylphenyl)tetrahydropyrimidin-2(1***H***)-one (12e). Yield (78%), mp. 188 °C; IR (KBr, v, cm<sup>-1</sup>): 3090, 2920, 2857, 1640, 1481, 1436, 1315, 1302, 1194, 703; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) \delta 7.58 – 7.50 (m, 2H, H-2"), 7.42 – 7.35 (m, 2H, H-3"), 7.20 – 7.14 (m, 1H, H-4"), 6.89 – 6.81 (m, 2H, H-3'), 5.35 (pseudo t,** *J* **= 3.0 Hz, 1H, H-4eq), 4.39 (dt,** *J* **= 2.3, 1.2 Hz, 1H, H-5"), 4.15 (td,** *J* **= 2.3, 1.2 Hz, 1H, H-3"), 4.13 (td,** *J* **= 2.3, 1.2 Hz, 1H, H-4"), 4.06 (dt,** *J* **= 2.3, 1.2 Hz, 1H, H-2"), 3.71 (s, 5H, H-6"), 3.38 (pseudo td,** *J* **= 12.7, 4.9 Hz, 1H, H-6ax), 3.49 (dddd,** *J* **= 12.0, 4.8, 3.3, 1.0 Hz, 1H, H-6eq), 2.56 (pseudo tt,** *J* **= 12.7, 4.9 Hz, 1H, H-5ax), 2.23 (s, 3H,** *p***-CH<sub>3</sub>), 2.17 (s, 3H,** *o***-CH<sub>3</sub>), 2.16 (s, 3H,** *o***-CH<sub>3</sub>), 2.13 (pseudo dq,** *J* **= 12.9, 3.5 Hz, 1H, H-5eq); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 153.1 (C-2), 143.7 (C-1"), 138.5 (C-1'), 136.7 (C-4'), 135.70 and 135.67 (2C, C-2' and C-6'), 129.11 and 129.10 (2C, C-3' and C-5'), 128.3 (C-3"), 127.7 (C-2"), 125.7 (C-4"), 89.0 (C-1"), 68.9 (C-6"), 68.6 (C-3""), 68.4 (C-5"), 66.6 (C-4""), 64.2 (C-2""), 58.6 (C-4), 44.0 (C-6), 31.1 (C-5), 20.9 (***p***-CH<sub>3</sub>), 18.2 (***o***-CH<sub>3</sub>), 17.7 (***o***-CH<sub>3</sub>). Anal. Calcd for C<sub>29</sub>H<sub>30</sub>FeN<sub>2</sub>O: C, 72.81; H, 6.32; Fe, 11.67; N, 5.86; O, 3.34%. Found: C, 72.74, H, 6.33, N, 5.87%.** 

**4-Ferrocenyl-1-(2-fluorophenyl)-3-phenyltetrahydropyrimidin-2(1***H***)-one (12f). Yield (84%), mp. 104 °C; IR (KBr, v, cm<sup>-1</sup>): 3090, 2932, 2235, 1643, 1498, 1480, 1434, 1314, 1195, 908, 756; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) \delta 7.49-7.44 (m, 2H, H-2" and H-6"), 7.40 – 7.34 (m, 2H, H-3" and H-5"), 7.31-7.26 (m, 1H, H-2'), 7.22 – 7.16 (m, 2H, H-4' and H-4"), 7.11 – 7.05 (m, 2H, H-3' and H-5'), 5.19 (pseudo t**, J = 3.8 Hz, 1H, C-4eq), 4.32 – 4.29 (m, 1H, H-5"), 4.15 (td, J =

2.4, 1.3 Hz, 1H, H-3"), 4.12 (td, J = 2.4, 1.3 Hz, 1H, H-4"), 4.04 (dt, J = 2.4, 1.3 Hz, 1H, H-2"), 3.73 (s, 5H, H-6"), 3.53 (pseudo td, J = 11.7, 3.9 Hz, 1H, H-6ax), 3.46 (dddd, J = 11.5, 5.0, 2.9, 1.0 Hz, 1H, H-6eq), 2.63 (pseudo ddt, J = 12.9, 11.8, 5.0 Hz, 1H, H-5ax), 2.15 (dq, J = 13.0, 3.5 Hz, 1H, H-5eq); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  158.4 (d, <sup>1</sup> $J_{C-F} = 249.4$  Hz, C-2'), 153.7 (C=O), 143.3 (C-1"), 131.1 (d, <sup>2</sup> $J_{C-F} = 12.5$  Hz, C-1'), 129.8 (d, <sup>3</sup> $J_{C-F} = 1.5$  Hz, C-6'), 128.4 (C-3"), 128.2 (d, <sup>3</sup> $J_{C-F} = 7.9$  Hz, C-4'), 127.9 (C-2"), 126.2 (C-4"), 124.3 (d, <sup>4</sup> $J_{C-F} = 3.7$  Hz, C-5'), 116.4 (d, <sup>2</sup> $J_{C-F} = 20.3$  Hz, C-3'), 88.5 (C-1""), 68.8 (C-6""), 68.4 (C-4""), 68.3 (C-2""), 66.8 (C-3""), 64.4 (C-5""), 58.8 (C-4), 45.9 (d, <sup>4</sup> $J_{C-F} = 2.0$  Hz, C-6), 31.1 (C-5). Anal. Calcd for C<sub>26</sub>H<sub>23</sub>FFeN<sub>2</sub>O: C, 68.74; H, 5.10; F, 4.18; Fe, 12.29; N, 6.17; O, 3.52%. Found: C, 68.67, H, 5.11, N, 6.16%.

4-Ferrocenyl-1-(3-fluorophenyl)-3-phenyltetrahydropyrimidin-2(1H)-one (12g). Yield (91%), mp. 62 °C; IR (KBr, v, cm<sup>-1</sup>): 3089, 2925, 1651, 1609, 1589, 1481, 1428, 1316, 1301, 1198, 707, 691; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.46 – 7.42 (m, 2H, H-2"), 7.42 – 7.36 (m, 2H, H-3"), 7.26 – 7.18 (m, 2H, H-5' and H-4"), 7.13 – 7.06 (m, 2H, H-2' and H-6'), 6.87-6.80 (m, 1H, H-4'), 5.17 (pseudo t, J = 3.9 Hz, 1H, H-4eq), 4.17 (dt, J = 2.3, 1.2 Hz, 1H, H-5'''), 4.16 (td, J =2.3, 1.2 Hz, 1H, H-3"), 4.11 (td, J = 2.3, 1.2 Hz, 1H, H-4"), 4.05 (dt, J = 2.3, 1.2 Hz, 1H, H-2"), 3.75 (s, 5H, H-6"), 3.62 (pseudo td, J = 11.6, 3.9 Hz, 1H, H-6ax), 3.53 (dddd, J = 11.4, 4.6, 3.4, 1.0 Hz, 1H, H-6eq), 2.60 (pseudo ddt, J = 13.0, 11.7, 4.8 Hz, 1H, H-5ax), 2.18 (pseudo dq, J =13.0, 3.6 Hz, 1H, H-5eq); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.6 (d, <sup>1</sup>J<sub>C-F</sub>= 245.1 Hz, C-3'), 153.7 (C-2), 145.4 (d,  ${}^{3}J_{C-F}$ = 10.1 Hz, C-1'), 143.2 (C-1"), 129.4 (d,  ${}^{3}J_{C-F}$ = 9.3 Hz, C-5'), 128.5 (C-3"), 128.0 (C-2"), 126.3 (C-4"), 120.9 (d,  ${}^{4}J_{C-F}$ = 3.0 Hz, C-6'), 113.0 (d,  ${}^{2}J_{C-F}$ = 23.5 Hz, C-2'), 112.1 (d,  ${}^{2}J_{C-F}$ = 21.0 Hz, C-4'), 88.6 (C-1'''), 68.8 (C-6'''), 68.4 (C-3'''), 68.2 (C-5'''), 67.0 (C-4'''), 64.4 (C-2"), 58.6 (C-4), 45.5 (C-6), 31.0 (C-5). Anal. Calcd for C<sub>26</sub>H<sub>23</sub>FFeN<sub>2</sub>O: C, 68.74; H, 5.10; F, 4.18; Fe, 12.29; N, 6.17; O, 3.52%. Found: C, 68.78, H, 5.09, N, 6.18%.

**4-Ferrocenyl-1-(4-fluorophenyl)-3-phenyltetrahydropyrimidin-2(1***H***)-one (12h). Yield (80%), mp. 151 °C; IR (KBr, v, cm<sup>-1</sup>): 3076, 2922, 2232, 1628, 1593, 1478, 1437, 1309, 1205, 1197, 828, 716; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) \delta 7.47 – 7.43 (m, 2H, H-2"), 7.42 – 7.36 (m, 2H, H-3"), 7.27 – 7.23 (m, 2H, H-2'), 7.23 – 7.20 (m, 1H, H-4"), 7.02 – 6.94 (m, 2H, H-3'), 5.19 (pseudo t,** *J* **= 3.8 Hz, 1H, H-4eq), 4.21 (dt,** *J* **= 2.4, 1.3 Hz, 1H, H-5"), 4.16 (td,** *J* **= 2.4, 1.3 Hz, 1H, H-3"'), 4.12 (td,** *J* **= 2.4, 1.3 Hz, 1H, H-4"'), 4.04 (dt,** *J* **= 2.4, 1.3 Hz, 1H, H-2"'), 3.74 (s, 5H, H-6"'), 3.58 (pseudo td,** *J* **= 11.7, 4.0 Hz, 1H, H-6ax), 3.47 (dddd,** *J* **= 11.5, 4.8, 3.1, 1.0 Hz, 1H, H-6eq), 2.60 (pseudo ddt,** *J* **= 13.0, 11.9, 4.9 Hz, 1H, H-5ax), 2.16 (pseudo dq,** *J* **= 13.0, 3.6 Hz, 1H, H-5eq); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 160.4 (d, <sup>1</sup>***J***<sub>C-F</sub>= 244.7 Hz, C-4'), 154.0 (C-2), 143.3 (C-1"), 139.9 (d, <sup>4</sup>***J***<sub>C-F</sub>= 3.0 Hz, C-1'), 128.4 (C-3"'), 128.0 (C-2"'), 127.7 (d, <sup>3</sup>***J***<sub>C-F</sub>= 8.4 Hz, C-2'), 126.2 (C-4"'), 115.3 (d, <sup>2</sup>***J***<sub>C-F</sub>= 22.5 Hz, C-3'), 88.7 (C-1"'), 68.8 (C-6"'), 68.4 (C-3"''), 68.1 (C-5"''), 66.9 (C-4"''), 64.4 (C-2"''), 58.7 (C-4), 46.0 (C-6), 31.0 (C-5). Anal. Calcd for C<sub>26</sub>H<sub>23</sub>FFeN<sub>2</sub>O: C, 68.74; H, 5.10; F, 4.18; Fe, 12.29; N, 6.17; O, 3.52%. Found: C, 68.65, H, 5.11, N, 6.17%.** 

**1-(2-Chlorophenyl)-4-ferrocenyl-3-phenyltetrahydropyrimidin-2(1***H***)-one (12i). Yield (80%), mp. 142 °C; IR (KBr, v, cm<sup>-1</sup>): 3086, 3067, 2970, 2938, 2859, 1647, 1481, 1438, 1313, 1200, 761;** 

Table S3. <sup>1</sup>H NMR data for **12i** 

| Hydrogen | Diastereoisomer I (45%)                 | Diastereoisomer II (55%)         |  |
|----------|-----------------------------------------|----------------------------------|--|
| H-4eq    | ~ 5.16 (overlapped m)                   |                                  |  |
| H-5ax    | 2.73-2.55 (overlapped m)                |                                  |  |
| H-5eq    | $\sim 2.23$ (overlapped m)              | $\sim 2.16$ (overlapped m)       |  |
| H-6ax    | $\sim 3.81$ (overlapped m)              | 3.57-3.28 (overlapped m)         |  |
| H-6eq    | 3.57-3.28 (overlapped m)                |                                  |  |
| H-2'''   | 4.14-4.04 (3.57-3.28 (overlapped m)     |                                  |  |
| H-3'''   | A DD A 1A (D 57 D                       | 28 (averlage of $m$ )            |  |
| H-4'''   | 4.23-4.14 (3.37-3                       | .28 (overlapped m)               |  |
| H-5'''   | ~ 4.51 (3.57-3.28 (overlapped m)        | ~ 4.37 (3.57-3.28 (overlapped m) |  |
| H-6'''   | ~ 3.77 (3.57-3.28 (overlapped s)        |                                  |  |
| H-3'     |                                         |                                  |  |
| H-4'     |                                         |                                  |  |
| H-5'     | 7.51-7.33 (3.57-3.2)                    | 8 (overlapped m, 5H)             |  |
| H-6'     | 7.32-7.23 (3.57-3.28 (overlapped m, 2H) |                                  |  |
| H-2"     | 7.22-7.12 (3.57-3.2)                    | 8 (overlapped m, 2H)             |  |
| H-3"     |                                         |                                  |  |
| H-4"     |                                         |                                  |  |

| Table S4. <sup>13</sup> C NMR da | ata for | 12i |
|----------------------------------|---------|-----|
|----------------------------------|---------|-----|

| 1 auto 54. C INN |                         |              |                          |   |
|------------------|-------------------------|--------------|--------------------------|---|
| Carbon           | Diastereoisomer I (45%) |              | Diastereoisomer II (55%) |   |
| C-2              |                         | 153.5        |                          | _ |
| C-4              |                         | ~ 58.9       |                          |   |
| C-5              | 31.4                    |              | 30.9                     |   |
| C-6              |                         | $\sim 45.6$  |                          |   |
| C-1'''           | 89.7                    |              | 89.1                     |   |
| C-2'''           | 65.2                    |              | 64.8                     |   |
| C-3'''           |                         | ~ 68.9       |                          |   |
| C-4'''           | 67.4                    |              | 67.1                     |   |
| C-5'''           | 69.8                    |              | 68.5                     |   |
| C-6'''           |                         | ~ 69.3       |                          |   |
| C-1'             |                         | 140.9        |                          |   |
| C-2'             |                         | 133.3        |                          |   |
| C-3'             |                         |              |                          |   |
| C-4'             | 130.1                   | 128 5 128 1  | 127.8                    |   |
| C-5'             | 150.1,                  | 120.5, 120.1 | , 127.0                  |   |
| C-6'             |                         |              |                          |   |
| C-1"             |                         | ~ 143.2      |                          |   |
| C-2"             |                         | 127.6        |                          |   |
| C-3"             |                         | 128.4        |                          |   |
| C-4"             |                         | 126.0        |                          |   |

Anal. Calcd for  $C_{26}H_{23}ClFeN_2O$ : C, 66.33; H, 4.92; Cl, 7.53; Fe, 11.86; N, 5.95; O, 3.40%. Found: C, 66.28, H, 4.93, N, 5.94%.

**1-(3-Chlorophenyl)-4-ferrocenyl-3-phenyltetrahydropyrimidin-2(1***H***)-one (12j). Yield (88%), mp. 74 °C; IR (KBr, v, cm<sup>-1</sup>): 2924, 2853, 1652, 1593, 1480, 1436, 1312, 1196, 700; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) \delta 7.46 – 7.42 (m, 2H, H-2"), 7.42 – 7.37 (m, 2H, H-3"), 7.37 – 7.34 (m, 1H, H-2'), 7.25 – 7.19 (m, 3H, H-2', H-4' and H-4"), 7.14 – 7.08 (m, 1H, H-5'), 5.17 (pseudo t,** *J* **= 3.9 Hz, 1H, H-4eq), 4.17 (dt,** *J* **= 2.4, 1.3 Hz, 1H, H-5"), 4.16 (td,** *J* **= 2.4, 1.3 Hz, 1H, H-3"), 4.11 (td,** *J* **= 2.4, 1.3 Hz, 1H, H-4"), 4.04 (dt,** *J* **= 2.4, 1.3 Hz, 1H, H-2"), 3.74 (s, 5H, H-6"), 3.62 (pseudo td,** *J* **= 11.6, 3.9 Hz, 1H, H-6ax), 3.52 (dddd,** *J* **= 11.4, 4.6, 3.3, 1.0 Hz, 1H, H-6eq), 2.60 (pseudo ddt,** *J* **= 13.0, 11.7, 4.8, 3.3 Hz, 1H, H-5ax), 2.18 (pseudo dq,** *J* **= 13.0, 3.6 Hz, 1H, H-5eq); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 153.6 (C-2), 145.0 (C-1'), 143.2 (C-1"), 133.9 (C-3'), 129.4 (C-6'), 128.5 (C-3"), 128.0 (C-2"), 126.4 (C-4"), 125.9 (C-2'), 125.4 (C-5'), 123.7 (C-4'), 88.6 (C-1"), 68.8 (C-6"), 68.4 (C-3"'), 68.2 (C-5"'), 67.0 (C-4"'), 64.4 (C-2"'), 58.6 (C-4), 45.5 (C-6), 31.0 (C-5). Anal. Calcd for C<sub>26</sub>H<sub>23</sub>ClFeN<sub>2</sub>O: C, 66.33; H, 4.92; Cl, 7.53; Fe, 11.86; N, 5.95; O, 3.40%. Found: C, 66.35, H, 4.91, N, 5.95%.** 

**1-(4-Chlorophenyl)-4-ferrocenyl-3-phenyltetrahydropyrimidin-2(1***H***)-one (12k). Yield (83%), mp. 130 °C; IR (KBr, v, cm<sup>-1</sup>): 3095, 2924, 1644, 1495, 1479, 1316, 1297, 1198, 759, 697; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) \delta 7.46 – 7.42 (m, 2H, H-2"), 7.41 – 7.36 (m, 2H, H-3"), 7.28 – 7.18 (m, 5H, H-2', H-3' and H-4"), 5.17 (pseudo t,** *J* **= 3.9 Hz, 1H, H-4eq), 4.18 (dt,** *J* **= 2.4, 1.3 Hz, 1H, H-5"'), 4.15 (td,** *J* **= 2.4, 1.3 Hz, 1H, H-3"), 4.10 (td,** *J* **= 2.4, 1.3 Hz, 1H, H-4"'), 4.04 (dt,** *J* **= 2.4, 1.3 Hz, 1H, H-2"'), 3.74 (s, 5H, H-6"'), 3.60 (pseudo td,** *J* **= 11.6, 3.9 Hz, 1H, H-6ax), 3.49 (dddd,** *J* **= 11.5, 4.9, 3.2, 1.0 Hz, 1H, H-6eq), 2.59 (pseudo ddt,** *J* **= 13.0, 11.8, 4.8 Hz, 1H, H-5ax), 2.16 (pseudo dq,** *J* **= 13.0, 3.6 Hz, 1H, H-5eq); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 153.7 (C-2), 143.2 (C-1"), 142.4 (C-1'), 130.7 (C-4'), 128.6 (C-2'), 128.4 (C-3"), 128.0 (C-2"), 127.0 (C-3'), 126.3 (C-4"), 88.6 (C-1""), 68.8 (C-6""), 68.4 (C-3""), 68.1 (C-5""), 66.9 (C-4""), 64.4 (C-2""), 58.6 (C-4), 45.6 (C-6), 31.0 (C-5). Anal. Calcd for C<sub>26</sub>H<sub>23</sub>ClFeN<sub>2</sub>O: C, 66.33; H, 4.92; Cl, 7.53; Fe, 11.86; N, 5.95; O, 3.40%. Found: C, 66.39, H, 4.93, N, 5.96%.** 

**1-(2-Bromophenyl)-4-ferrocenyl-3-phenyltetrahydropyrimidin-2(1***H***)-one (12l). Yield (62%), mp. 88 °C; IR (KBr, v, cm<sup>-1</sup>): 3269, 3083, 2930, 1645, 1477, 1433, 1312, 1298, 1192, 1026, 757;** 

| Table S5. <sup>1</sup> H NMR data for | : 12I |
|---------------------------------------|-------|
|---------------------------------------|-------|

| Hydrogen | Diastereoisomer I (43%)               | Diastereoisomer II (57%)                       |
|----------|---------------------------------------|------------------------------------------------|
| H-4eq    | 5.27 (pseudo t, $J = 3.7$ Hz)         | 5.25 (pseudo t, $J = 3.5$ Hz)                  |
| H-5ax    | 2.63 (pseudo tt, $J = 12.3$ , 4.8 Hz) | 2.69 (pseudo tt, $J = 12.4$ , 4.9 Hz)          |
| H-5eq    | 2.21 (pseudo dq, $J = 12.9$ , 3.4 Hz) | 2.14 (pseudo dq, $J = 12.9$ , 3.5 Hz)          |
| H-6ax    | $\sim$ 3.79 (overlapped)              | 3.35 (pseudo td, $J = 11.8$ , $4.0$ Hz)        |
| H-6eq    | 3.34-3.27 (m)                         | 3.42 (dddd, <i>J</i> = 11.3, 4.4, 2.9, 1.0 Hz) |
| H-2'''   | $\sim$ 4.08 (overlapped)              | $\sim$ 4.06 (overlapped)                       |
| H-3'''   | $\sim$ 4.13 (overlapped)              | $\sim$ 4.17 (overlapped)                       |
| H-4'''   | $\sim$ 4.09 (overlapped)              | $\sim$ 4.15 (overlapped)                       |
| H-5'''   | 4.47-4.44 (m)                         | 4.34-4.31 (m)                                  |
| H-6'''   | 3.72 (s)                              | 3.74 (s)                                       |
| H-3'     | ~ 7.28 (overlapped)                   |                                                |
| H-4'     | 7.16-7.09 (m)                         |                                                |
| H-5'     | 7.63-7.56 (m)                         |                                                |
| H-6'     | $\sim 7.29$ (overlapped)              |                                                |
| H-2"     | 7.53-7.45 (m)                         |                                                |
| H-3"     | 7.41-7.35 (m)                         |                                                |
| H-4"     | 7.23-7.16 (m)                         |                                                |

| Carbon | Diastereoisomer I (43%) | Diastereoisomer II (57%) |
|--------|-------------------------|--------------------------|
| C-2    | 153.4                   | 153.4                    |
| C-4    | ~ 58                    | .7 (overlapped)          |
| C-5    | 31.2                    | 30.9                     |
| C-6    | 45.5                    | 45.7                     |
| C-1''' | 88.6                    | 88.8                     |
| C-2''' | 64.3                    | 64.4                     |
| C-3''' | 68.3                    | 68.5                     |
| C-4''' | 66.6                    | 66.8                     |
| C-5''' | 69.4                    | 68.0                     |
| C-6''' | 68.8                    | 68.9                     |
| C-1'   | 142.7                   | 142.4                    |
| C-2'   | 123.7                   | 123.8                    |
| C-3'   | 130.6                   | 130.2                    |
| C-4'   | 128.6                   | 128.8                    |
| C-5'   | 133.2                   | 133.3                    |
| C-6'   | ~ 128                   | 8.4 (overlapped)         |
| C-1"   | 143.2                   | 143.3                    |
| C-2"   | 128.1                   | 127.8                    |
| C-3"   | ~ 128                   | 8.3 (overlapped)         |
| C-4"   | 126.1                   | 126.0                    |

Table S6. <sup>13</sup>C NMR data for **12** 

Anal. Calcd for C<sub>26</sub>H<sub>23</sub>BrFeN<sub>2</sub>O: C, 60.61; H, 4.50; Br, 15.51; Fe, 10.84; N, 5.44; O, 3.11%. Found: C, 60.55, H, 4.49, N, 5.45%.

**1-(3-Bromophenyl)-4-ferrocenyl-3-phenyltetrahydropyrimidin-2(1***H***)-one (12m). Yield (68%), mp. 81 °C; IR (KBr, v, cm<sup>-1</sup>): 3077, 2938, 1645, 1587, 1472, 1417, 1296, 1187, 997, 774, 689; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) \delta 7.52 – 7.50 (m, 1H, H-2'), 7.45 – 7.37 (m, 4H, H-2", H-3"), 7.28 – 7.20 (m, 3H, H-4', H-6' and H-4"), 7.19 – 7.12 (m, 1H, H-5'), 5.17 (pseudo t,** *J* **= 3.9 Hz, 1H, H-4eq), 4.17 (dt,** *J* **= 2.4, 1.3 Hz, 1H, H-5"), 4.16 (dt,** *J* **= 2.4, 1.3 Hz, 1H, H-3"), 4.11 (td,** *J* **= 2.4, 1.3 Hz, 1H, H-4"), 4.04 (dt,** *J* **= 2.5, 1.3 Hz, 1H, H-2"), 3.74 (s, 5H, H-6"), 3.62 (pseudo td,** *J* **= 11.6, 3.9 Hz, 1H, H-6ax), 3.51 (dddd,** *J* **= 11.5, 4.6, 3.3, 1.0 Hz, 1H, H-6eq), 2.60 (pseudo ddt,** *J* **= 13.0, 11.8, 4.8 Hz, 1H, H-5ax), 2.18 (pseudo dq,** *J* **= 13.0, 3.6 Hz, 1H, H-5eq); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 153.6 (C-2), 145.1 (C-1'), 143.2 (C-1"), 129.7 (C-5'), 128.8 (C-2'), 128.5 (C-3"), 128.3 (C-6'), 128.0 (C-2"), 126.4 (C-4"), 124.1 (C-4'), 121.9 (C-3'), 88.6 (C-1"'), 68.8 (C-6"'), 68.4 (C-3"'), 68.2 (C-5"'), 67.0 (C-4"''), 64.4 (C-2"'), 58.6 (C-4), 45.5 (C-6), 31.0 (C-5). Anal. Calcd for C<sub>26</sub>H<sub>23</sub>BrFeN<sub>2</sub>O: C, 60.61; H, 4.50; Br, 15.51; Fe, 10.84; N, 5.44; O, 3.11%. Found: C, 60.67, H, 4.49, N, 5.44%.** 

**1-(4-Bromophenyl)-4-ferrocenyl-3-phenyltetrahydropyrimidin-2(1***H***)-one (12n). Yield (89%), mp. 90 °C; IR (KBr, v, cm<sup>-1</sup>): 3083, 2930, 1645, 1477, 1431, 1313, 1297, 1195, 1001, 809, 716; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) \delta 7.46 – 7.36 (m, 6H, H-3' and H-2" and H-3"), 7.24–7.21 (m, 1H, H-4"), 7.21 – 7.17 (m, 2H, H-2'), 5.17 (pseudo t,** *J* **= 3.9 Hz, 1H, H-4eq), 4.17 (dt,** *J* **= 2.4, 1.3 Hz, 1H, H-5"), 4.15 (dt,** *J* **= 2.4, 1.3 Hz, 1H, H-3"), 4.10 (td,** *J* **= 2.4, 1.3 Hz, 1H, H-4"), 4.04 (dt,** *J* **= 2.5, 1.3 Hz, 1H, H-2"), 3.74 (s, 5H, H-6"), 3.60 (pseudo td,** *J* **= 11.6, 3.9 Hz, 1H, H-6ax), 3.50 (dddd,** *J* **= 11.5, 4.6, 3.2, 1.0 Hz, 1H, H-5eq), 2.60 (pseudo ddt,** *J* **= 13.0, 11.8, 4.8 Hz, 1H, H-5ax), 2.17 (pseudo dq,** *J* **= 13.0, 3.6 Hz, 1H, H-5eq); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)** 

δ 153.7 (C-2), 143.2 (C-1"), 142.9 (C-1'), 131.5 (C-3'), 128.5 (C-3"), 128.0 (C-2"), 127.3 (C-2'), 126.3 (C-4"), 118.6 (C-4'), 88.6 (C-1"'), 68.8 (C-6"'), 68.4 (C-3"'), 68.2 (C-5"'), 66.9 (C-4"'), 64.4 (C-2"'), 58.6 (C-4), 45.5 (C-6), 31.0 (C-5). Anal. Calcd for C<sub>26</sub>H<sub>23</sub>BrFeN<sub>2</sub>O: C, 60.61; H, 4.50; Br, 15.51; Fe, 10.84; N, 5.44; O, 3.11%. Found: C, 60.58, H, 4.51, N, 5.43%.

**4-Ferrocenyl-1-(2-methoxyphenyl)-3-phenyltetrahydropyrimidin-2(1***H***)-one (120). Yield (99%), mp. 143 °C; IR (KBr, v, cm<sup>-1</sup>): 2932, 1641, 1499, 1440, 1339, 1308, 1190, 1106, 1030, 760; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) \delta 7.53 – 7.47 (m, 2H, H-2"), 7.41 – 7.32 (m, 2H, H-3"), 7.24 – 7.18 (m, 2H, H-4' and H-6'), 7.18-7.14 (m, 1H, H-4"), 6.95 – 6.87 (m, 2H, H-3' and H-5'), 5.21 (pseudo t,** *J* **= 3.6 Hz, 1H, H-4eq), 4.47-4.35 (m, 1H, H-5"), 4.16 – 4.13 (m, 1H, H-3"), 4.13-4.11 (m, 1H, H-4"), 4.07 – 4.04 (m, 1H, H-2"), 3.81 (s, 3H, OCH<sub>3</sub>), 3.73 (s, 5H, H-6"), 3.56-3.40 (m, 1H, H-6ax), 3.39-3.27 (m, 1H, H-6eq), 2.62 (pseudo tt,** *J* **= 12.8, 4.6 Hz, 1H, H-5ax), 2.09 (pseudo dq,** *J* **= 12.9, 3.3 Hz, 1H, H-5eq); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 155.6 (C-2'), 154.1 (C-2), 143.7 (C-1"), 132.4 (C-1'), 129.9 (C-4'), 128.2 (C-3"), 128.2 (C-6'), 127.9 (C-2"), 125.8 (C-4"), 120.7 (C-5'), 111.9 (C-3'), 89.1 (C-1""), 68.8 (C-6""), 68.6 (C-5""), 68.2 (C-3""), 66.5 (C-4""), 64.4 (C-2""), 58.7 (C-4), 55.5 (OCH<sub>3</sub>), 45.4 (C-6), 31.2 (C-5). Anal. Calcd for C<sub>27H26</sub>FeN<sub>2</sub>O<sub>2</sub>: C, 69.54; H, 5.62; Fe, 11.97; N, 6.01; O, 6.86%. Found: C, 69.46, H, 5.61, N, 5.99%.** 

**4-Ferrocenyl-1-(3-methoxyphenyl)-3-phenyltetrahydropyrimidin-2(1***H***)-one (12p). Yield (58%), mp. 138 °C; IR (KBr, v, cm<sup>-1</sup>): 3072, 2974, 2933, 2861, 2832, 1633, 1594, 1432, 1300, 1197, 1038, 764; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) \delta 7.48 – 7.42 (m, 2H, H-2"), 7.42 – 7.35 (m, 2H, H-3"), 7.23 – 7.17 (m, 2H, H-5' and H-4"), 6.91 – 6.89 (m, 1H, H-2'), 6.89 – 6.85 (m, 1H, H-6'), 6.74 – 6.68 (m, 1H, H-4'), 5.18 (pseudo t,** *J* **= 3.8 Hz, 1H, H-4eq), 4.21 (dt,** *J* **= 2.4, 1.3 Hz, 1H, H-5"), 4.15 (td,** *J* **= 2.4, 1.3 Hz, 1H, H-3"), 4.11 (td,** *J* **= 2.4, 1.3 Hz, 1H, H-4"), 4.04 (dt,** *J* **= 2.4, 1.3 Hz, 1H, H-5"), 3.54 (dddd,** *J* **= 11.5, 4.6, 3.1, 1.0 Hz, 1H, H-6eq), 2.60 (pseudo tdd,** *J* **= 13.0, 11.9, 4.8 Hz, 1H, H-5ax), 2.16 (pseudo dq,** *J* **= 13.0, 3.6 Hz, 1H, H-5eq); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 159.8 (C-3'), 153.8 (C-2), 145.1 (C-1'), 143.4 (C-1"),129.2 (C-5'), 128.4 (C-3"), 128.0 (C-2"), 126.2 (C-4"), 118.0 (C-6'), 111.9 (C-2'), 111.5 (C-4'), 88.8 (C-1"'), 68.8 (C-6"'), 68.4 (C-3"'), 68.2 (C-5"'), 66.9 (C-4"'), 64.4 (C-2"'), 58.6 (C-4), 55.4 (OCH<sub>3</sub>), 45.8 (C-6), 31.0 (C-5). Anal. Calcd for C<sub>27</sub>H<sub>26</sub>FeN<sub>2</sub>O<sub>2</sub>: C, 69.54; H, 5.62; Fe, 11.97; N, 6.01; O, 6.86%. Found: C,69.57, H, 5.62, N, 6.02%.** 

**4-Ferrocenyl-1-(4-methoxyphenyl)-3-phenyltetrahydropyrimidin-2(1***H***)-one (12p). Yield (64%), mp. 140 °C; IR (KBr, v, cm<sup>-1</sup>): 1644, 1514, 1475, 1433, 1296, 1246, 1188, 1175, 1029, 831, 705; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) \delta 7.50 – 7.44 (m, 2H, H-2"), 7.41 – 7.34 (m, 2H, H-3"), 7.23 – 7.13 (m, 3H, H-2' and H-4"), 6.87 – 6.80 (m, 2H, H-3'), 5.19 (pseudo t,** *J* **= 3.7 Hz, 1H, H-4eq), 4.25 (dt,** *J* **= 2.4, 1.3 Hz, 1H, H-5"'), 4.15 (td,** *J* **= 2.4, 1.3 Hz, 1H, H-3"'), 4.12 (td,** *J* **= 2.4, 1.3 Hz, 1H, H-4"'), 4.04 (dt,** *J* **= 2.4, 1.3 Hz, 1H, H-2"'), 3.76 (s, 3H, OCH<sub>3</sub>), 3.73 (s, 5H, H-6"'), 3.55 (pseudo td,** *J* **= 11.8, 4.0 Hz, 1H, H-6ax), 3.46 (dddd,** *J* **= 11.6, 5.0, 3.0, 1.1 Hz, 1H, H-6eq), 2.59 (pseudo ddt,** *J* **= 12.9, 12.1, 4.8 Hz, 1H, H-5ax), 2.13 (pseudo dq,** *J* **= 12.9, 3.4 Hz, 1H, H-5eq); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 157.4 (C-4'), 154.1 (C-2), 143.6 (C-1"), 137.0 (C-1'), 128.3 (C-3"), 127.9 (C-2"), 127.4 (C-2'), 125.9 (C-4"'), 113.9 (C-3'), 88.9 (C-1"'), 68.8 (C-6"'), 68.3 (C-3"'), 68.1 (C-5"'), 66.8 (C-4"'), 64.4 (C-2"'), 58.6 (C-4), 55.5 (OCH<sub>3</sub>), 46.1 (C-6), 31.0 (C-5). Anal. Calcd for C<sub>27</sub>H<sub>26</sub>FeN<sub>2</sub>O<sub>2</sub>: C, 69.54; H, 5.62; Fe, 11.97; N, 6.01; O, 6.86%. Found: C, 69.49, H, 5.61, N, 6.00%.** 

#### 4-Ferrocenyl-1,2,3,4-tetrahydroquinoline (10)

A mixture of the aminoalcohol **9a** (obtained from 1 mmol of **8a**, as described above for the synthesis of **12a-q**), aniline (2 mmol) and acetic acid (1 mL) was placed in an ultrasonic cleaner and irradiated for 2 h. The reaction mixture was neutralized with NaHCO<sub>3</sub> and extracted with CH<sub>2</sub>Cl<sub>2</sub> (two 20 mL portions). The combined organic layers were washed with water and dried over anh. Na<sub>2</sub>SO<sub>4</sub>. After the evaporation of the solvent, the crude product was purified by column chromatography (SiO<sub>2</sub>; *n*-hexane-EtOAc, 8:2 (v/v)).

**4-Ferrocenyl-1,2,3,4-tetrahydroquinoline** (**10**). Yield (90%), mp. 120 °C; IR (KBr, v, cm<sup>-1</sup>): 3425, 3082, 2978, 2927, 2860, 2835, 1601, 1494, 1313, 1283, 1103, 810, 748; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.07 (pseudo d, J = 7.5 Hz, 1H, H-5), 7.00 – 6.95 (m, 1H, H-7), 6.59 (td, J = 7.4, 1.2 Hz, 1H, H-6), 6.45 (dd, J = 8.0, 1.2 Hz, 1H, H-8), 4.16 (s, 5H, H-6'), 4.11 (td, J = 2.4, 1.3 Hz, 1H, H-4'), 4.10 – 4.06 (m, 2H, H-3' and H-4'), 3.89 (dt, J = 2.5, 1.3 Hz, 1H, H-2'), 3.85-3.81 (overlapped m, 2H, H-4 and N-H), 3.29 – 3.16 (m, 2H, H-2a and H-2b), 2.23 (ddt, J = 13.0, 8.8, 4.5 Hz, 1H, H-3a), 1.98 (dddd, J = 13.0, 10.1, 6.3, 3.8 Hz, 1H, H-3b); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  144.0 (C-8a), 129.5 (C-5), 127.1 (C-7), 123.7 (C-4a), 116.3 (C-6), 113.8 (C-8), 94.1 (C-1'), 69.8 (C-2'), 68.6 (5C, C-6'), 67.6 (C-4'), 66.5, 65.8 (C-3', 5'), 39.3 (C-2), 36.3 (C-4), 29.6 (C-3). Anal. Calcd for C<sub>19</sub>H<sub>19</sub>FeN: C, 71.94; H, 6.04; Fe, 17.61; N, 4.42%. Found: C, 71.89, H, 6.05, N, 4.41%.

**1-(4-Chlorophenyl)-1-(3-ferrocenyl-3-hydroxypropyl)-3-phenylurea** (**11k**). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.46 – 7.40 (m, 2H, H-2'), 7.33 – 7.27 (m, 2H, H-3'), 7.27 – 7.20 (m, 4H, H-2" and H-3"), 7.04 – 6.98 (m, 1H, H-4'), 6.41 (br s, 1H, NH), 4.54 – 4.49 (m, 1H, H-6), 4.24 – 4.20 (m, 1H, C<sub>5</sub>H<sub>4</sub>), 4.19 – 4.16 (m, 1H, H-4a), 4.13 (s, 5H, C<sub>5</sub>H<sub>5</sub>), 4.13 – 4.10 (m, 3H, C<sub>5</sub>H<sub>4</sub>), 3.66 (ddd, *J* = 14.4, 6.8, 4.4 Hz, 1H, H-4b), 3.40 (d, *J* = 4.1 Hz, 1H, OH), 2.02 – 1.90 (m, 1H, H-5a), 1.80 (ddt, *J* = 14.0, 6.0, 4.4 Hz, 1H, H-5b); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.8 (C=O), 139.7 (C-1'), 138.5 (C-4"), 133.8 (C-1"), 130.5 (C-2'), 129.6, 128.9 (C-2", 3"), 123.3 (C-4'), 119.5 (C-3'), 92.5 (C<sub>5</sub>H<sub>4</sub>), 68.6 (C<sub>5</sub>H<sub>4</sub>), 68.4 (C<sub>5</sub>H<sub>5</sub>), 67.9 (C<sub>5</sub>H<sub>4</sub>), 67.7(C<sub>5</sub>H<sub>4</sub>), 66.5 (C-6), 66.1 (C<sub>5</sub>H<sub>4</sub>), 46.7 (C-4), 36.3 (C-5).

#### References

- I. Damljanović, D. Stevanović, A. Pejović, M. Vukićević, S. B. Novaković, G. A. Bogdanović, T. Mihajilov-Krstev, N. Radulović, R. D. Vukićević, *J. Organomet. Chem.* 2011, 696, 3703
- A. Pejović, D. Stevanović, I. Damljanović, M. Vukićević, S. B. Novaković, G. A. Bogdanović, T. Mihajilov-Krstev, N. Radulović, R. D. Vukićević, *Helv. Chim. Acta*, 2012, 95, 1425





 $^1\text{H}$  NMR (400 MHz, CDCl\_3) spectrum of 81



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of 81







<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **8m** 





 $^{13}\text{C}$  NMR (50 MHz, CDCl<sub>3</sub>) spectrum of 8n



<sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>) spectrum of 80



<sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>) spectrum of **80** 



<sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>) spectrum of **8p** 



 $^{13}\text{C}$  NMR (50 MHz, CDCl<sub>3</sub>) spectrum of 8q









<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **12a** 



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **12b** 



 $^{13}\text{C}$  NMR (101 MHz, CDCl<sub>3</sub>) spectrum of 12c



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **12d** 



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **12e** 



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **12f** 



 $^{13}C$  NMR (101 MHz, CDCl<sub>3</sub>) spectrum of 12g



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **12h** 



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **12i** 



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **12j** 



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **12k** 



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **12**l



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **12m** 



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **12n** 



 $^{13}\text{C}$  NMR (101 MHz, CDCl<sub>3</sub>) spectrum of 12o



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **12p** 



 $^{13}\text{C}$  NMR (101 MHz, CDCl<sub>3</sub>) spectrum of 12q



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of mixture 9k and 11k





SI 40



Fragment of HSQC spectrum of mixture 9k and 11k