One-pot protocol to synthesis *N*-(β-nitro)aimides by tandem Henry/Ritter reaction

Wensi Ai^b, Ronghua Shi^b, Liyan Zhu^a, Dehong Jiang^b, Xiaobo Ma^a,

Jilan Yuan^a, Zhouyu Wang*^a

^a Department of Chemistry, Xihua University, Chengdu, 610039, China

^b Department of Pharmaceutics Engineering, Xihua University, Chengdu, 610039, China

China Tel.: +86-28-87723006

zhouyuwang77@gmail.com, zhouyuwang@mail.xhu.edu.cn (Supporting Information)

General: All starting materials were of the commercially available (analytical grade) and used without further purification. All the solvents are used after redistillation. Reactions were monitored by thin layer chromatography using silica gel HSGF254 plates. Flash chromatography was performed using silica gel HG/T2354-92. Melting points were measured with SGW X-4 melting point apparatus. ¹H NMR (300, 400 or 600 MHz) spectra were recorded in CDCl₃. ¹H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl₃, δ 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, q = quartet, m = multiplet), coupling constants (Hz) and integration.¹³C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃, 77.0ppm).

Experimental Section

General procedures for the synthesis of 2-nitro-1-phenyl-ethanol

The mixture of benzaldehyde (1.0 mmol), nitromethane (4.0 mmol) and base were stirred in the solvent at designed temperature for designed time. Then the solvent was removed under reduced pressure and the residue was purified by silicagel column chromatography (petroleum ether/ethyl acetate = 10/1) to give the corresponding 2-nitro-1-phenylethanol.

General procedures for the synthesis of N-(\beta-nitroalkyl) amides

The 2-nitro-1-arylethanol (1.0mmol), nitrile (4 mmol), and 1,4-diazabicyclo[2.2.2]octane (DABCO, 0.5 mmol) were dissolved in nitrile (0.5 mL). The reaction mixture was stirred at 0°C for 24h. Then the trifluoromethanesulfonic acid (3 mmol) was added and the mixture was stirred at 40°C for 24h. The reaction was then quenched by the addition of sodium bicarbonate at room temperature. The solvent was removed under reduced pressure and the residue was purified by silicagel column chromatography (petroleum ether/ethyl acetate = 10/1) to give the corresponding *N*-(β -nitroalkyl) amides.

The procedures for the synthesis of 7

To a well-stirred mixture of N-(2-nitro-1-phenylethyl) benzamide (130.1 mg, 0.5mmol) and Nickel

chloride hexahydrate (119mg, 0.5mmol) in absolute ethyl alcohol (5mL) at 0°C, sodium borohydride (90mg, 5mmol) was added. The mixture was stirred at 0°C for 2 hours and then quenched with saturated aqueous NH₄Cl. The mixture was diluted with dichloromethane. The organic layer was separated and aqueous layer was extracted with CH_2Cl_2 (10mL×3). The combined extracts were washed with water (10mL×2), dried over magnesium sulfate and concentrated under vacuum to afford crude amine intermediate **6**. The crude amine **6** was dissolved in absolute ethyl alcohol (5mL). Sodium hydroxide was introduced slowly which made the pH exceed 12. The mixture was stirred at 90°C for 5h and then concentrated under reduced pressure. After purification by flash chromatography with neutral alumina (dichloromethane/methyl alcohol = 10/1), the product **7** was obtained (82% yield).

The procedures for the synthesis of 8

To a well-stirred mixture of *N*-(2-nitro-1-phenylethyl) benzamide (130.1 mg, 0.5mmol) and Nickel chloride hexahydrate (119mg, 0.5mmol) in absolute ethyl alcohol (5mL) at 0°C, sodium borohydride (90mg, 5mmol) was added. The mixture was stirred at 0°C for 2 hours and then quenched with saturated aqueous NH₄Cl. The mixture was diluted with dichloromethane. The organic layer was separated and aqueous layer was extracted with CH₂Cl₂ (10mL×3). The combined extracts were washed with water, dried over magnesium sulfate and concentrated under vacuum to afford crude amine intermediate 4. The crude amine 4 and were dissolved in H₂O/ 1, 4-dioxane (1: 2 mL). The (Boc)₂O (130.8mg, 0.6mmol) was added. Then sodium hydroxide was introduced slowly which made the pH exceed 12. The mixture was stirred at room temperature for 2h and then extracted with EtOAc(10mL×3). The combined organic extracts were dried over MgSO₄. The solvent was removed under reduced pressure. After purification by flash chromatography (petroleum ether/ethyl acetate = 5/1), the product **8** were obtained (72% yield).

N-(2-nitro-1-phenylethyl)acetamide (3a) : white solid; yield: 82%; mp: 136.2-136.8°C; ¹H NMR (300 MHz, CDCl₃): δ = 2.02 (s, 3H), 4.70 (dd, *J* = 5.52, 12.90 Hz, 1H), 4.87 (dd, *J* = 6.90, 12.93 Hz, 1H), 5.66 (q, J = 7.23 Hz, 1H), 6.62 (d, J = 7.23 Hz, 1H), 7.26-7.39 (m, 5H); ESI HRMS exact mass calcd. for C₁₀H₁₂N₂O₃+H⁺ requires m/z 209.0921, found m/z 209.0918.

N-(2-nitro-1-phenylethyl)benzamide (3b): white solid; yield: 79%; mp: 125.0-125.9°C; ¹H NMR (300 MHz, CDCl₃): δ = 4.84 (dd, J = 5.28, 12.99 Hz, 1H), 5.04 (dd, J = 6.30, 12.99 Hz, 1H), 7.09 (d, J = 7.32 Hz, 1H), 7.26 - 7.54 (m, 7H), 7.80 (d, = 7.14 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 51.6, 78.3,126.4, 127.1, 128.8, 128.9, 129.3, 132.2, 133.4, 136.3, 167.0; ESI HRMS exact mass calcd. for C₁₅H₁₄N₂O₃+H⁺ requires m/z 271.1082, found m/z 271.1080.

N-(2-nitro-1-phenylethyl)-2-phenylacetamide (3c) : white solid; yield: 76%; mp: 116.5-117.2°C; ¹H NMR (300 MHz, CDCl₃): δ = 3.63 (s, 2H), 4.65 (dd, J = 5.19, 12.90 Hz, 1H), 4.79 (dd, J = 6.57, 12.87 Hz, 1H), 5.65 (q, J = 6.51Hz, 1H), 6.29 (d, J = 7.28Hz, 1H), 7.13-7.16 (m, 2H), 7.26 - 7.54 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): 43.6, 51.2, 78.2, 126.1, 127.7, 128.7, 129.2, 129.4, 134.1, 136.2, 170.1; ESI HRMS exact mass calcd. for C₁₆H₁₆N₂O₃+H⁺ requires m/z 285.1234, found m/z 285.1241.

N-(1-(4-fluorophenyl)-2-nitroethyl)acetamide (3e) : white solid; yield: 83%; mp: 137.8-138.7°C; ¹H NMR (300 MHz, CDCl₃): δ =4.70 (dd, J = 5.43, 12.99 Hz, 1H), 4.90 (dd, J = 6.54, 12.99 Hz, 1H), 5.66 (dd, J = 6.09, 12.87 Hz, 1H), 6.46 (bs, 1H), 7.05 - 7.10 (m, 2H), 7.27 - 7.32 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 23.2, 50.7, 78.2, 116.1, 116.4, 128.2, 128.3, 132.2, 161.5, 169.8. ESI HRMS exact mass calcd. for C₁₀H₁₁FN₂O₃+H⁺ requires m/z 227.0826, found m/z 227.0828.

N-(1-(4-fluorophenyl)-2-nitroethyl)benzamide (3f) : white solid; yield: 81%; mp: 131.2-131.9°C; ¹H NMR (300 MHz, CDCl₃): δ = 4.83 (dd, J = 5.19, 13.05 Hz, 1H), 5.04 (dd, J = 6.30, 13.08 Hz, 1H), 5.86 (q, J = 6.09 Hz, 1H), 7.32 - 7.39 (m, 2H), 7.46 (t, J = 7.54 Hz, 2H), 7.56 (t, J = 7.32 Hz, 1H), 7.80 (d, J = 7.44 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 51.0, 78.3, 116.2, 116.4, 127.1, 128.2, 128.3, 128.8, 132.3, 133.3, 161.5, 167.0; ESI HRMS exact mass calcd. for C₁₅H₁₃FN₂O₃+H⁺ requires 289.0983, found 289.0979

N-(1-(4-fluorophenyl)-2-nitroethyl)-2-phenylacetamide (3g) : white solid; yield: 76%; mp: 107.0-107.8°C; ¹H NMR (300 MHz, CDCl₃): δ = 3.62 (s, 2H), 4.63 (dd, J = 5.10, 12.93 Hz, 1H), 4.78 (dd, J = 6.63, 12.93 Hz, 1H), 5.62 (q, J = 6.60 Hz, 1H), 6.38 (d, J = 7.62 Hz, 1H), 7.01 (t, J = 8.43 Hz, 2H), 7.13 (d, J = 8.67 Hz, 2H), 7.31-7.41 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): 43.6, 50.6, 78.2, 116.1, 116.3, 127.8, 128.0, 128.1, 129.3, 132.1, 134.0, 161.4, 170.7; ESI HRMS exact mass calcd. for C₁₅H₁₃FN₂O₃ +H⁺ requires 289.0983, found 289.0979.

N-(1-(4-chlorophenyl)-2-nitroethyl)acetamide (3i) : white solid; yield: 78%; mp: 117.6-118.4°C; ¹H NMR (400 MHz, CDCl₃): δ = 2.08 (s, 3H), 4.73 (dd, J = 5.28, 13.12 Hz, 1H), 4.92 (dd, J = 6.48, 13.12 Hz, 1H), 5.68 (q, J = 6.04 Hz, 1H), 6.47 (d, J = 7.52 Hz, 1H), 7.27 (d, J = 8.48 Hz, 2H), 7.38 (d, J = 8.52 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 23.1, 50.7, 78.0, 127.9, 129.4, 134.7, 135.0, 170.0; ESI HRMS exact mass calcd. for C₁₀H₁₁ClN₂O₃+H⁺ requires m/z 243.0531, found m/z 243.0533.

N-(1-(4-chlorophenyl)-2-nitroethyl)benzamide (3j): white solid; yield: 72%; mp: 138.4-139.2°C; ¹H NMR (400 MHz, CDCl₃): δ = 4.86 (dd, J = 5.04, 13.16 Hz, 1H), 5.04 (dd, J = 6.24, 13.16 Hz, 1H), 5.87 (q, J = 5.72 Hz, 1H), 7.16 (d, J = 7.72 Hz, 1H), 7.33 - 7.35 (m, 2H), 7.38 - 7.40 (m, 2H), 7.49 (t, J = 7.80 Hz, 2H), 7.54 - 7.60 (m, 1H), 7.82 (d, J = 8.56 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 51.0, 78.2, 127.1, 127.8, 128.8, 129.5, 132.3, 133.2, 134.8, 134.9, 167.0; ESI HRMS exact mass calcd. for C₁₅H₁₃ClN₂O₃ +H⁺requires m/z 305.0687, found m/z 305.0688.

N-(1-(4-chlorophenyl)-2-nitroethyl)-2-phenylacetamide (3k) : white solid; yield: 75%; mp: 119.9-120.7°C; ¹H NMR (400 MHz, CDCl₃): δ = 3.66 (s, 2H), 4.66 (dd, J = 5.00, 13.04 Hz, 1H), 4.80 (dd, J = 6.48, 13.00 Hz, 1H), 5.62 (q, J = 6.20 Hz, 1H), 6.33 (d, J = 7.60 Hz, 1H), 7.10 (d, J = 8.48 Hz, 2H), 7.28 - 7.44 (m, 7H); ¹³C NMR (100 MHz, CDCl₃): 43.5, 50.6, 78.0, 127.6, 127.7, 129.2, 129.3, 129.4, 134.1, 134.6, 134.8, 170.9; ESI HRMS exact masscaled. for C₁₆H₁₅ClN₂O₃ +Na⁺ requires m/z 341.0663, found m/z 341.0674.

N-(1-(4-bromophenyl)-2-nitroethyl)acetamide (3l) : white solid; yield: 77%; mp: 134.8-135.2°C; ¹H NMR (300 MHz, CDCl₃): δ = 2.03 (s, 3H), 2.05 (s, 3H), 4.71(dd, J = 13.11, 5.28 Hz, 1H), 4.87 (dd, J = 13.11, 6.48 Hz, 1H), 5.63 (q, J = 6.12 Hz, 1H), 6.47 (d, J = 7.02 Hz, 1H), 7.18 (d, J = 8.34 Hz, 2H), 7.50 (d, J = 8.43 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 23.2, 50.8, 78.0, 122.8, 128.2, 132.4, 135.5, 170.0. ESI HRMS exact mass calcd. for C₁₀H₁₂BrN₂O₃ requires m/z 287.0026, found m/z 287.0027.

N-(1-(4-bromophenyl)-2-nitroethyl)benzamide (3m) : white solid; yield: 81%; mp: 160.1-161.1°C; ¹H NMR (400 MHz, CDCl₃): δ = 4.84 (dd, J = 4.80, 13.04 Hz, 1H), 7.43 - 7.58 (m, 5H), 7.82 (d, J = 7.44 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 51.0, 77.8, 122.9, 127.1, 128.1, 132.3, 133.2, 135.4, 167.0. ESI HRMS exact mass calcd. for C₁₅H₁₃ BrN₂O₃+H⁺ requires m/z 349.0182, found m/z 349.0183.

N-(1-(4-bromophenyl)-2-nitroethyl)-2-phenylacetamide (3n) : white solid; yield: 72%; mp: 124.8-126.2°C; ¹H NMR (400 MHz, CDCl₃): δ = 3.65 (s, 2H), 4.66 (dd, J = 5.00, 13.08 Hz, 1H), 4.80 (dd, J = 6.52, 13.04 Hz, 1H), 5.61 (q, J = 6.40, 13.20 Hz, 1H), 6.40 (d, J = 7.88 Hz, 1H), 7.04 (d, J = 8.40 Hz, 2H), 7.28 (d, J = 8.28 Hz, 2H), 7.36 - 7.49 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): 43.6, 50.6, 78.0, 122.8, 127.8, 127.9, 129.3, 132.3, 134.0, 135.3, 170.8; ESI HRMS exact mass calcd. for C₁₆H₁₅BrN₂O₃ +H⁺requires m/z 363.0339, found m/z 363.0338.

N-(2-nitro-1-p-tolylethyl)acetamide (30) : white solid; yield: 78%; mp: 116.4-117.2°C; ¹H NMR (300 MHz, CDCl₃): δ = 2.03 (s, 3H), 2.33 (s, 3H), 4.71(dd, J = 5.28, 12.84 Hz, 1H), 4.87 (dd, J = 6.48, 13.11 Hz, 1H), 5.63 (q, J = 6.54 Hz, 1H), 6.60 (bs, 1H), 7.18 - 7.26 (m, 4H); ¹³CNMR (200MHz, CDCl₃): 21.1, 23.1, 51.3, 78.3, 126.5, 129.8, 133.6, 138.6, 170.2. ESI HRMS exact mass calcd. for C₁₁H₁₄N₂O₃ +H⁺ requires m/z 223.1077, found m/z 223.1085.

N-(2-nitro-1-p-tolylethyl)benzamide (3p) : white solid; yield: 70%; mp: 149.5-150.5°C; ¹H NMR (300 MHz, CDCl₃): δ = 2.34 (s, 3H), 4.82 (dd, J = 5.49, 12.89 Hz, 1H), 5.02 (dd, J = 6.27, 12. 90 Hz, 1H), 5.83 (q, J = 7.50Hz, 1H), 6.99 (d, J = 7.93 Hz, 1H), 7.18 - 7.27 (m, 4H), 7.45 (t, J = 6.27 Hz, 2H), 7.51 (t, J = 6.09 Hz,, 1H), 7.78 (d, J = 7.11 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 21.1, 51.5, 78.3, 126.4, 127.1, 128.7, 129.9, 132.1, 133.4, 133.5, 138.8, 167.1. ESI HRMS exact mass calcd. for C₁₆H₁₆N₂O₃ +H⁺ requires m/z 285.1234, found m/z 285.1240.

N-(2-nitro-1-p-tolylethyl)-2-phenylacetamide (3q) : white solid; yield: 68%; mp: 116.8-117.2°C; ¹H NMR (300 MHz, CDCl₃): δ = 2.31 (s, 3H), 3.62 (s, 2H), 4.63 (dd, J = 5.31, 12.75 Hz, 1H), 4.78 (dd, J = 6.51, 12.78 Hz, 1H), 5.60 (dd, J = 6.18, 13.71 Hz, 1H), 6.23 (d, J = 7.74 Hz, 1H), 7.02 (d, J = 8.07 Hz, 2H), 7.13 (d, J = 8.04 Hz, 2H), 7.25 - 7.40 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): 21.1, 43.6, 51.0, 78.3, 126.1, 127.6, 129.1, 129.4, 129.8, 133.2, 134.2, 138.6, 170.7. ESI HRMS exact mass calcd. for C₁₇H₁₈N₂O₃ +H⁺ requires m/z 299.1390, found m/z 299.1389.

N-(1-(2-bromophenyl)-2-nitroethyl)acetamide (3r) : white solid; yield: 71%; mp: 139.6-140.1°C; ¹H NMR (400 MHz, CDCl₃): δ = 2.10 (s, 3H), 4.81 (dd, J = 4.72, 13.08 Hz, 1H), 4.97 (dd, J = 7.08, 13.08 Hz, 1H), 5.99- 6.03 (m, 1H),6.91 (d, J = 7.60 Hz, 1H), 7.20 - 7.27 (m, 1H), 7.28- 7.54 (m, 2H), 7.62 (d, J = 7.84 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): 23.3, 55.3, 86.4, 126.5, 128.6, 129.1, 136.9, 169.9. ESI HRMS exact mass calcd. for C₁₀H₁₁BrN₂O₃+H⁺ requires m/z 287.0029, found m/z 287.0028.

N-(1-(2-bromophenyl)-2-nitroethyl)benzamide (3s) : white solid; yield: 65%; mp: 193.6-194.3°C; ¹H NMR (400 MHz, CDCl₃): δ = 4.95 (dd, J = 4.84, 13. 00 Hz, 1H), 5.13 (dd, J = 6.48, 13.20 Hz, 1H), 6.18 (q, J = 6.68 Hz, 1H), 7.23- 7.58(m, 6H), 7.65 (d, J = 8.00 Hz, 1H), 7.85 (d, J = 7.20Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): 51.7, 77.3, 127.1, 128.2, 128.4, 128.8, 130.2, 130.4, 132.3, 133.9, 135.2, 166.6. ESI HRMS exact mass calcd. for C₁₅H₁₃BrN₂O₃ +H⁺ requires m/z 349.0182, found m/z 349.0175.

N-(1-(2-bromophenyl)-2-nitroethyl)-2-phenylacetamide (3t) : white solid; yield: 62%; mp: 167.5-168.4°C; ¹H NMR (400 MHz, CDCl₃): δ = 3.65 (d, J = 1.52 Hz, 2H), 4.74 (dd, J = 4.72, 12.88 Hz, 1H), 4.85 - 4.92 (m, 1H), 5.91 - 5.96 (m, 1H), 6.60 (d, J = 7.68 Hz, 1H), 7.09 (d, J = 7.64 Hz, 1H), 7.21 (td, J = 1.60, 7.76 Hz, 1H), 7.18 - 7.54 (m, 7H), 7.58 (d, J = 7.88 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): 43.7, 51.3, 76.8, 122.6, 127.8, 128.1, 129.3, 129.5, 130.3, 133.8, 134.0, 135.0, 170.4. ESI HRMS exact mass calcd. for C₁₆H₁₅BrN₂O₃+H⁺ requires m/z 363.0339, foundm/z 363.0343.

N-(1-(naphthalen-1-yl)-2-nitroethyl)acetamide (3u) : white solid; yield: 70%; mp: 162.1-163.0°C; ¹H NMR (400 MHz, CDCl₃): δ = 2.05 (s, 3H), 4.92 - 5.02 (m, 2H), 6.33 (d, J = 7.44 Hz, 1H), 6.57 (q, J = 6.88 Hz, 1H), 7.46 - 7.48 (m, 2H), 7.57 - 7.64 (m, 2H), 7.87 - 7.93 (m, 2H), 8.12 (d, J = 8.44 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): 23.1, 47.6, 77.4, 122.3, 123.2, 125.1, 126.4, 127.4, 129.2, 129.7, 130.4, 132.1, 134.1, 169.7. ESI HRMS exact mass calcd. for C₁₄H₁₄N₂O₃ +H⁺ requires m/z 259.1077, found m/z 259.1080.

N-(1-(naphthalen-1-yl)-2-nitroethyl)benzamide (3v) : white solid; yield: 62%; mp: 218.4-219.0°C; ¹H NMR (400 MHz, CDCl₃): δ = 5.09 (dd, J = 6.00, 12.80 Hz, 1H), 5.16 (dd, J = 6.64, 12.84 Hz, 1H), 6.77 (q, J = 6.56 Hz, 1H), 6.93 (d, J = 7.32 Hz, 1H), 7.45 - 7.67 (m, 7H), 7.81 (d, J = 7.16 Hz, 2H), 7.90 (d, J = 8.08 Hz, 1H), 7.94 (d, J = 7.84 Hz, 1H), 8.18 (d, J = 8.56 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): 48.1, 77.2, 122.3, 123.3, 125.1, 127.5, 128.8, 129.3, 129.8, 131.8, 132.2, 132.3, 134.4, 166.9. ESI HRMS exact mass calcd. for C₁₉H₁₈N₂O₃+H⁺ requires m/z 321.1234, found m/z 321.1240.

N-(1-(naphthalen-1-yl)-2-nitroethyl)-2-phenylacet-amide (3w) : white solid; yield: 63%; mp: 185.5-186.0°C; ¹H NMR (300 MHz, CDCl₃): δ = 3.64 (d, J = 2.64 Hz, 1H), 4.86 (d, J = 5.97 Hz, 2H), 6.23 (bs, 1H), 6.52 (q, J = 7.08 Hz, 1H), 7.20 - 7.59 (m, 9H), 7.83 (d, J = 8.32 Hz, 1H), 7.89 (d, J = 7.70 Hz, 1H), 8.02 (d, J = 8.16 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): 43.6, 47.7, 77.2, 122.1, 123.1, 125.1, 127.4, 127.7, 129.4, 129.7, 130.2, 131.8, 134.1, 170.6; ESI HRMS exact mass calcd. for C₂₀H₁₈N₂O₃ +Na⁺ requires m/z 357.1210, found m/z 357.1213.

N-(2-nitro-1-phenylpropyl)acetamide (3x) : white solid; yield: 74%; mp: 140.2-141.1°C; diastereomeric ratio: 88%; ¹H NMR (400 MHz, CDCl₃): δ = 1.58 (d, J = 6.76 Hz, 3H), 2.09 (s, 3H), 4.98 - 5.05 (m, 1H), 5.46-5.52 (m, 1H), 6.70 (d, J = 9.20 Hz, 1H), 7.27 - 7.41 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): 23.2, 29.7, 51.2, 122.9, 128.1, 128.2, 130.3, 133.8, 135.2, 169.6. ESI HRMS exact mass calcd. for C₁₁H₁₄N₂O₃ +H⁺ requires m/z 223.1026, found m/z 223.1030.

N-(2-nitro-1-phenylpropyl)benzamide (3y) : white solid; yield: 73%; mp: 199.9-200.8°C; diastereomeric ratio: 69%; ¹H NMR (400 MHz, CDCl₃): δ =1.69 (d, J = 6.76 Hz, 3H), 5.10 - 5.20 (m, 1H), 5.64 - 5.72 (m, 1H), 7.33 - 7.42 (m, 5H), 7.48 - 7.60 (m, 3H), 7.87 (d, J = 7.08 Hz, 2H). ESI HRMS exact mass calcd. for C₁₆H₁₆N₂O₃+H⁺ requires m/z 285.1234, found m/z 285.1235.

N-(2-nitro-1-phenylpropyl)-2-phenylacetamide (3z) : white solid; yield: 70%; mp: 137.1-137.8°C; diastereomeric ratio: 78%; ¹H NMR (400 MHz, CDCl₃): δ =1.50 (d, J = 6.76 Hz, 3H), 3.61 - 3.77 (m, 2H), 4.87 - 4.95 (m, 1H), 5.43 (dd, J = 6.00, 9.40 Hz, 1H), 6.54 (d, J = 9.04 Hz, 1H), 7.10 (d, J = 6.12 Hz, 2H) 7.28 - 7.46 (m, 8H). ¹³C NMR (100 MHz, CDCl₃): 17.1, 43.7, 55.1, 86.4, 126.3, 127.7, 128.5, 129.1, 129.3, 129.4, 134.3. 136.8, 170.8; ESI HRMS exact mass calcd. for C₁₇H₁₈N₂O₃ +H⁺ requires m/z 299.1334, found m/z 285.1335.

N-(2-nitro-1-(thiophen-2-yl)ethyl)acetamide (3aa) : white solid; yield: 80%; ¹H NMR (400 MHz, CDCl₃): δ = 2.09 (s, 3H), 4.77 - 4.81 (dd, J = 5.4, 13.3 Hz, 1H), 4.95 - 4.99 (dd, J = 5.8, 13.3 Hz, 1H), 5.92 - 5.97 (m, 1H), 6.34 (brs, 1H), 7.00 - 7.05 (m, 2H), 7.13 - 7.3 (m, 1H) . ¹³C NMR (100 MHz, CDCl₃): 23.2, 47.2, 78.0, 125.6, 125.8, 127.4, 139.3, 169.6.

¹H and ¹³C NMR Spectra:

The ¹H and ¹³C NMR Spectra of 3c

The ¹H and ¹³C NMR Spectra of 3e

The ¹H and ¹³C NMR Spectra of 3f

The ¹H and ¹³C NMR Spectra of 3g

The ¹H and ¹³C NMR Spectra of 3i

The ¹H and ¹³C NMR Spectra of 31

The ¹H and ¹³C NMR Spectra of 3m

wc-M-1-17-1

The ¹H and ¹³C NMR Spectra of 30

The ¹H and ¹³C NMR Spectra of 3p

The ¹H and ¹³C NMR Spectra of 3q

The ¹H and ¹³C NMR Spectra of 3v

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1

The ¹H NMR Spectra of 3y

The ¹H and ¹³C NMR Spectra of 3aa