Magnetic-EpCAM Nanoprobe as a New Platform for Efficient Targeting,

Isolating and Imaging Hepatocellular Carcinoma

C. Pilapong ^{a,*}, C. Raiputta ^a, J. Chaisupa ^a, S.Sittichai^b, S. Thongtem ^b, T. Thongtem ^c

^a Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand

^b Department of Physics and Material Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

^c Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

* Corresponding author. Tel.: +66 53 94 9306; fax: +66 53 21 3218.

E-mail address: chalermchai.pilapong@cmu.ac.th (C. Pilapong).

Experiment

Inhibition studies

The HepG2 cells were pretreated for 30 min at 37 °C and 5% CO₂ with DMEM containing 50 mM sodium azide, which act as endocytosis inhibitor. After that, 100 uL of EpCAM-MNP was added to the above solution and further incubated for 5 h at 37 °C and 5% CO₂. The effect of inhibitor on cellular uptake of EpCAM-MNP via endocytosis pathway was determined by measuring intracellular iron content and compared with control cells (incubation without inhibitor).

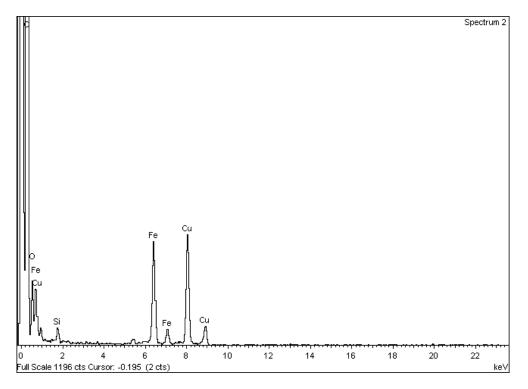


Fig. S1 EDS spectrum of NH₂-MNP

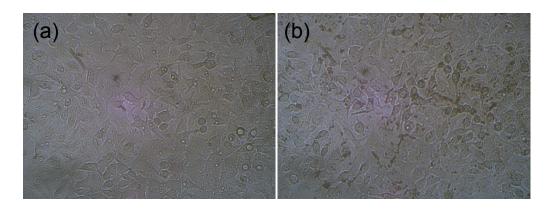


Fig S2. Optical microscope images of untreated cells (a) and the cells treated with EpCAM-MNPs for 48h (b).