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S1. Thermally activated friction

In the theory of thermally activated friction, temperature (and velocity) dependence is expressed 
via [1]:
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where  is the lateral force amplitude at 0 K,  is as defined in the main text with a fitting parameter 𝐹𝑚𝑎𝑥 𝑣0

 (  , where  and  are the first derivative of the lateral 
𝑓0~

1
2𝜋( 𝑘

𝑚𝑡𝑖𝑝
)1/2 𝑘 =

𝑘0𝑘1

𝑘0 + 𝑘1 𝑘0 = 1.53 𝑁/𝑚, 𝑘1 = 10 𝑁/𝑚

force with respect to the sliding distance (Fig. S2) and the virtual cantilever lateral stiffness, respectively) 

at a given normal load for a tip with an effective mass , and  [1]. Note that the average 𝑚𝑡𝑖𝑝
𝛽 =

3𝜋 𝐹𝑚𝑎𝑥

2 2𝑎
friction force in Eq. S1 is equal to the lateral force amplitude F, which assumes overrelaxation of the tip-
sample contact. Here (and often experimentally) the actual friction force  (lateral force offset, also see 𝐹𝑓

section below) is only a fraction of  with  corresponding to the overall dissipative properties of 𝐹 𝛼 = 𝐹𝑓/𝐹

the experimental or simulated system.

For a light CNT tip comprised of approximately 200 carbon atoms, , which, with  𝑚𝑡𝑖𝑝 = 4 × 10 ‒ 24 𝑘𝑔

 yields . 𝑘 = 1.5 𝑁/𝑚 𝑓0 = 97.6 𝐺𝐻𝑧

Given the values of  and k obtained above, we obtain  . Again, one should note that the 𝑓0 𝑣0 = 2.54 𝑚/𝑠

value of  (and thus ) in general are not constant, depending on the amplitude of the lateral force as a 𝑘0 𝑓0

function of sliding distance (Fig. S2), making these values load-dependent.

We solved Eq. (S1) numerically for F and report here , using the lateral force amplitudes and the values 𝐹𝑓

of  at 2 K as taken directly from the simulated data;  was the only fitting parameter. The results are 𝛼 𝑓0

shown in Fig. S1 for . In particular, no increasing trends with respect to temperature are 𝑣 = 1 𝑚/𝑠

observed in a general sweep of  (Fig. S1 (b)) and no Eq. (S1) solutions were found for .𝑓0 𝑓0 < 4 𝐺𝐻𝑧

Electronic Supplementary Material (ESI) for RSC Advances.
This journal is © The Royal Society of Chemistry 2015



S2

Figure S1. Comparison between simulated data and existing theory for the supported sample at all 
simulated normal loads (a); a sweep of  for a typical  value obtained from simulations (b). 𝑓0 𝐹𝑚𝑎𝑥

S2. Friction force calculation

The high computational efficiency of the harmonic constraints enabled us to simulate 10 ns of 
scanning (unless stated otherwise), providing good statistics in terms of the number of lateral stick-slip 
events experienced by the tip. All force averages were calculated during the last 7.5 ns of each simulation. 
The mean friction forces presented in the main text were calculated as averages of the lateral force trace 
data (with a total simulated bandwidth of 250 THz, as dictated by the time-step of 1 fs and the rate of tip-
sample force output of every 20 time-steps). A low-pass filter was applied to the raw lateral force data in 
order to remove added high-frequency thermal noise prior to calculating averages. The effective 
bandwidth of the filter was 20 GHz, while the characteristic stick-slip frequency corresponded to 4 GHz 
(at the tip highest sliding velocity of 1 m/s). The grand averages were calculated from the per-bin 
averages, as described in Fig. S2.

The stick-slip periodicity necessary for combining the data accurately into bins was calculated directly 
from the Fourier transform peak of the lateral force data, as shown in the inset of Fig. S2. The use of bins 
was dictated by the fact that the absolute value of the sought average (offset) is about an order of 
magnitude smaller than the (locally varying) lateral force amplitude (see values of  in Fig. S1 (a)). In 𝛼
addition, the periodicity of the lateral force is distributed over a distance of about 0.15 , as shown in the Å
inset of Fig. S2, contributing to the overall variation of local average between the stick-slip events. 

Throughout the presented average friction data, the relative standard deviation varied from 1 % at the 
temperature of 2 K to 13 % at 500 K.



S3

Figure S2. Calculation of average friction from lateral force data (from 0 nN normal load, 300 K of Fig. 2 
(a) of main text) with use of data bins. The inset shows the Fourier spectral density of the lateral force 
data presented; the position of the peak is the effective lattice constant of the scanned sample . The width 𝜆
of each bin is an integer number of .  All lateral scans were performed along the negative direction of the 𝜆
Y-axis, resulting in a positive average.

S3. Graphene model

The computationally efficient graphene representation used in this work is an extension of the 
approach presented [2] and used earlier [3-6], based on a generic model in molecular mechanics [7, 8]. 
The model was described in detail and dynamically tested in [9] using Nosé-Hoover thermostatics.

For this work, the stiffness constants , , 
𝑘𝑏𝑜𝑛𝑑 =
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 [9]. The used model is mathematically guaranteed to yield 0 K structural 
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properties of graphene in agreement with the “parent” bond-order potential for small isotropic strains [2]. 
In addition to the previously published validation of the approach, we specifically tested our harmonic 
constraint model against the “parent” optimized second-generation bond-order Brenner potential [10] by 
directly simulating the thermal rippling process using both methods and calculating the time-averages of 
the effective ripple height , thermostatted with use of the Langevin scheme along the sample 〈ℎ2〉1/2

perimeter, as used in this work. The results of the comparison are shown in Fig. S3, as calculated for a 
8192-atom graphene sample with full periodic boundary.  The rippling magnitudes (and thus the effects 
thereof, as reported in the main text) are somewhat underestimated by the harmonic constraint model, 
compared to the optimized Brenner potential, arising primarily from higher-amplitude modes at 

 (λ > 3.1 nm) in the latter (see inset). The differences between the two models increase with 𝑞 < 0.2 Å ‒ 1

increasing temperature. Such increasing discrepancy is natural, because agreement is only expected near  
0 K, as follows from the constraint energy form used [9]. Nevertheless, the order of magnitude of the 
simulated rippling heights for both models is qualitatively consistent with the fundamental theory of 
thermally fluctuating membranes [11], as well as with previously published work [6, 12, 13]. 
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Figure S3. Out-of-plane height RMSD as a function of temperature for the 8192-atom graphene sample. 
The bars represent the time-variance of the calculated RMSD. The inset shows spatial distributions of the 
out-of-plane ripples at T = 300 K.

S4. Scaling and lateral strain

The effects of scaling are shown in Fig. S4, where in (a) we plot the friction force as a function of 

temperature for various sample sizes at 0 nN normal load. The differences in  trends, as well as in the (𝑑𝐹
𝑑𝑇)

rippling distributions (see inset) are observed, depending on size, demonstrating high sensitivity of  (𝑑𝐹
𝑑𝑇)

on the sample size. This indeed includes possible effects of anharmonic coupling, manifested by local 
decreases in distribution slopes at  (λ > 3.1 nm), depending on sample size (top left of inset),  𝑞 < 0.2 Å ‒ 1

as mentioned in the main text and consistent with [6]. Additionally, differences in the Bragg peak heights 
(especially the second peak) are also observed (bottom right of inset), which directly affects the thermal 

activation mechanism b(T). In Fig. S4 (b), we examine the effect of lateral strain: a   trend is (𝑑𝐹
𝑑𝑇) > 0

observed below 100 K for the strained sample, in contrast with the strain-free case. As shown in the inset, 
rippling is suppressed overall as a result of strain. Importantly, the local distribution slope is modified 
significantly throughout  (λ > 0.63 nm), as expected from pre-stretching a membrane [11]. The 𝑞 < 1.0 Å ‒ 1

first Bragg peak in the inset is also suppressed, again likely contributing to b(T).

All rippling distributions were averaged over a 1000 sets of Fourier data from atomic position snapshots.
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Figure S4. Friction as a function of temperature for different sample sizes at 0 nN normal load; inset 
shows the h(q) distributions obtained from the snapshots of atomic positions at T = 300 K (a); friction as a 
function of temperature at 0 nN normal load for a 5408 sample without strain and with 1.3 % lateral 
strain.

S5. Simulation and theory comparison

Although the theoretical discussion presented in the main text is qualitative, in Fig. S5 we show 
the data set from Fig. 4 (a) alongside the corresponding fits of Eq. (5). Here, we assume that the 
functional form of Eq. (S1) is unaffected by the presence of waves in free-standing samples, and thus the 
(1- b(T)) portion of Eq. (5) is solved directly with use of Eq. (S1). The effects of waves on the actual 
physics (within the assumed Tabor-like model) are then accounted for by the values  and , used as 𝑓0 𝜀
fitting parameters.

The values of  for the 1.2 nm and 2.2 nm tip were taken directly from simulation and are equal to 60 𝐹𝑚𝑎𝑥

pN and 100 pN, respectively. The values of  were set to 8 GHz and 20 GHz for the 1.2 nm and 2.2 nm 𝑓0

wide tip, respectively. With such values of , the b(T) << 1 hypothesis for the free-standing samples is 𝑓0

indeed supported (see Fig. S1 (b) above). One notes that the increase of  for the 2.2 nm wide tip 𝑓0

(relative to the 1.2 nm tip) makes qualitative sense, as the lateral stick-slip amplitude increases with the 
tip diameter. The fitting values of  are shown in Fig. S5. 𝜀
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Figure S5. Data from Fig. 4 (a) alongside corresponding Eq. (5) fits. The continuous lines are shown only 
for temperatures, where the solution of Eq. (S1) was found.
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