Electronic Supplementary Information

Well-dispersed magnetic iron oxide nanocrystals on sepiolites

nanofibers for arsenic removal

Na Tian,^a Xike Tian,^{*,a} Longlong Ma,^a Chao Yang,^a Yanxin Wang,^b Zhenyang Wang,^c and Lide Zhang^c

^a Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China. Fax: +86 027 67884574; Tel: +86 027 67884574; E-mail: xktian@cug.edu.cn

^b School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.

^c Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China.

*Corresponding auther e-mail: xktian@cug.edu.cn

Fig. S1 SEM images of the MI/SEPs-250 (a) and MI/SEPs-500 (d), and corresponding elemental mappings of iron (b, e) and oxygen (c, f), suggesting the homogeneous dispersion of Fe and O in these MI/SEPs.

Fig. S2 FT-IR spectra of the pristine SEPs (a), MI/SEPs-250 (b), and MI/SEPs-500 (c).

Fig. S3 UV-vis absorption spectra of As(III) solution (a), As(III) solution with dispersed MI/SEPs (b), and As(III) solution after magnetic separation (c).

Fig. S4 Pseudo-first order kinetic (a) and pseudo-second order kinetic (b) adsorption curves of arsenic (III) on MI/SEPs. The initial concentration was 1 mg L⁻¹, the dosage of adsorbents was 0.5 g L⁻¹, and the initial pH values for the solutions were 7.0.

Fig. S5 Adsorption isotherms of arsenic (III) and fluoride on MI/SEPs-250.

Fig. S6 The comparison of arsenic uptake of MI/SEPs in the first and second cycle.

Table S1 The specific surface area, pore size and pore volume of samples.

Samples	Surface area (m ² g ⁻¹)	Pore size (nm)	Pore volume (cm ³ g ⁻¹)
SEPs	297.19	6.19	0.46
MI/SEPs-250	125.75	9.78	0.31
MI/SEPs-500	104.96	10.65	0.28

Table S2 Saturation Magnetization (M_S), Coercivity (Hc), Remanence (M_R) for MI/SEPs at 300K.

Samples	\mathbf{M}_{S} (emu g ⁻¹)	\mathbf{M}_{R} (emu g ⁻¹)	Hc (Oe)
MI/SEPs-250	31.95	0.40	5.65
MI/SEPs-500	29.53	0.24	4.58

Table S3 The calculated Langmuir and Freundlich isotherm parameters for arsenic adsorption on MI/SEPs.

Samples Langmuir isotherm			Freundlich	Freundlich isotherm			
	q_m (mg g ⁻¹)	$\frac{K_L}{(L mg^{-1})}$	<i>R</i> ²	K_F (mg g ⁻¹) (L ³ mg ⁻¹) ^{-1/n}	п	R^2	
MI/SEPs-250	35.15	0.2126	0.9959	6.208	1.952	0.9656	
MI/SEPs-500	50.35	0.1039	0.9984	5.080	1.597	0.9750	

Table S4 Comparison of arsenic (III) adsorption capacities.

Adsorbents	Concentration(mg L ⁻¹)	Q _{max} (mg g ⁻¹)	Reference
γ-Fe ₂ O ₃ @Carbon	0-18	29.4	1
Graphene-CNT-γ-Fe ₂ O ₃	0-10	6.4	2
Fe ₃ O ₄ -RGO	3-7	13.1	3
Iron oxide/CNTs	0-12	8.13	4
Cellulose@Fe ₂ O ₃	0-30	23.16	5
MI/SEPs	0-50	50.35	This study

Table S5 The calculated kinetic parameters for arsenic adsorption on MI/SE	Ps.
--	-----

Samples	q _{e,exp}	Pseudo-first order		Pseudo	-second orde	r		
	(mg g ⁻¹)	<i>k</i> ₁ (min ⁻¹)	$q_{e,cal} \ (\mathrm{mg~g^{-1}})$	<i>R</i> ²		<i>k</i> ₂ (g mg ⁻¹ min ⁻¹)	$q_{e,cal} \ ({ m mg~g^{-1}})$	<i>R</i> ²
MI/SEPs-250	3.15	3.111× 10 ⁻²	5.474	0.6312		2.300× 10 ⁻²	3.192	0.9915
MI/SEPs-500	7.900	1.950 × 10 ⁻³	7.053	0.9417		1.500 × 10 ⁻³	8.979	0.9940

Composition	Concentration (µg L-1)		
Chromium	73.14		
Nickel	23.11		
Copper	5.36		
Plumbum	4.32		
Arsenic	456.5		
TOC (Total organic carbon)	3013.2		
UV ₂₅₄	0.05		

Table S6 Composition of real groundwater in Jianghan Plain, Hubei.

Reference

- 1 Z. X. Wu, W. Li, P. A. Webley and D. Y. Zhao, Adv. Mater., 2012, 24, 485.
- 2 S. Vadahanambi, S. H. Lee, W. J. Kim and I. K. Oh, Environ. Sci. Technol. 2013, 47, 10510.
- 3 V. Chandra, J. Park, Y. Chun, J. W. Lee, I. C. Hwang and K. S. Kim, ACS Nano, 2010, 4, 3979.
- 4 J. Ma, Z. L. Zhu, B. Chen, M. X. Yang, H. M. Zhou, C. Li, F. Yu and J. H. Chen, *J. Mater. Chem. A*, 2013, 1, 4662.
- 5 X. L. Yu, S. R. Tong, M. F. Ge, J. C. Zuo, C. Y. Cao and W. G. Song, J. Mater. Chem. A, 2013, 1, 959.