Supporting Information for

NiMoO₄@Co(OH)₂ core/shell structure nanowire arrays supported on Ni foam for high-performance supercapacitors

Weiji Ren,^{ab} Di Guo,^a Ming Zhuo,^a Bingkun Guan,^a Dan Zhang^c and Qiuhong Li^{*ab}

^a Key laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China. E-mail address: liqiuhong@xmu.edu.cn. Tel.: 86-592-2187198.

^b Pen-Tung Sah Institute of Micro-Nano Science and Technology of Xiamen University, Xiamen, 361005, China.

^c Department of Electronic Engineering, School of Information Science and Engineering, Xiamen University, Xiamen 361005, China.

Supplementary Figures

Figure S1 Typical SEM images (a, b, c, d) of the NiMoO4 nanowire arrays grown on Ni foam.

Figure S2 The cross section SEM image of the NiMoO₄@Co(OH)₂ NWAs on Ni foam.

Figure S3 XRD patterns of the NiMoO₄ nanowire arrays.

Figure S4 EDS patterns of NiMoO₄@Co(OH)₂ NWAs electrode.

Figure S5 (a) The CV curves of the NiMoO₄ NWAs electrode at different scan rates. (b) Comparison of the NiMoO₄@Co(OH)₂ and NiMoO₄ NWAs electrode at the same scan rate of 20 mV s⁻¹; (c) charging/discharging voltage profiles of the NiMoO₄ NWAs electrode at different current densities ranging from 5 to 50 mA cm⁻²; (d) Comparison of the NiMoO₄@Co(OH)₂ and NiMoO₄ NWAs electrodes at the same current density of 10 mA cm⁻².

For comparison, the CV curves of NiMoO₄ and NiMoO₄@Co(OH)₂ NWAs at the scan rate of 20 mV s⁻¹ are shown in Figure S5b, the area region of NiMoO₄@Co(OH)₂ NWAs are obviously bigger than NiMoO₄ NWAs. It is clearly shown in Figure S5d that charging/discharging time of the NiMoO₄@Co(OH)₂ NWAs become much longer than the NiMoO₄ NWAs at 10 mA cm⁻² and the former arrays do not display fast potential drop in the discharge curve. The discharge capacitance of the NiMoO₄@Co(OH)₂ NWAs at 10 mA cm⁻² was 1.820 F cm⁻², which is 1.76 times than that of bare NiMoO₄ NWAs (1.033 F cm⁻²), demonstrating the advantage of capacitance improvement.

Figure S6 Coulombic efficiency of the NiMoO₄@Co(OH)₂ NWAs electrode.

Figure S7 SEM image of the NiMoO₄@Co(OH)₂ NWAs after 5000 cycles.

Table S1 The comparative electrochemical performance of different kinds of the hybrid $NiMoO_4$ materials.

Electrode Materials	Capacitance	Current Density	Reference
NiMoO ₄ nanorods	944.8 F g ⁻¹	1 A g ⁻¹	16
NiMoO ₄ nanospheres	974.4 F g ⁻¹	1 A g ⁻¹	16
CoMoO ₄ -NiMoO ₄ nanobundles	1039 F g ⁻¹	2.5 mA cm ⁻²	17
Nano β -NiMoO ₄ -CoMoO ₄ ·xH ₂ O composites	1472 F g ⁻¹	5 mA cm ⁻²	18
NiMoO ₄ ·xH ₂ O nanorods	1136 F g ⁻¹	5 mA cm ⁻²	19
Nano α-NiMoO4 nanoparticles	1517 F g ⁻¹	1.2 A g ⁻¹	20
NiMoO4 hierarchical unltrathin mesoporous	1200.5 F g ⁻¹	20 A g ⁻¹	21
nanosheets			
$NiMoO_4 \cdot H_2O$ nanoclusters	680 F g ⁻¹	1 A g ⁻¹	22
GO 1D-NiMoO4 nH2O nanorods	367 F g ⁻¹	5 A g ⁻¹	23
1D-NiMoO ₄ · nH ₂ O nanorods	161 F g ⁻¹	5 A g ⁻¹	23
NiMoO ₄ @Co(OH) ₂ core/shell nanowire arrays	2.335 F cm ⁻²	5 mA cm ⁻²	This work
	(2122.7 F g ⁻¹)	(4.5 A g ⁻¹)	