Supporting information for

Intense UV upconversion through highly sensitized NaRF₄,Tm (R:Y,Yb) crystals

Vishal Kale*a, Mika Lastusaari^{b,c}, Jorma Hölsä^{b,c,d} and Tero Soukka^a

^a Department of Biotechnology, University of Turku, Tykistökatu 6 A, FI-20520 Turku, Finland.

^b Department of Chemistry, University of Turku, FI-20014 Turku, Finland.

^c Turku Centre for Materials and Surfaces (MatSurf), Turku, Finland.

^d Instituto de Química, Universidade de São Paulo, São Paulo-SP, Brazil.

Corresponding Author

*Email: vishal.kale@utu.fi

Fig. S1 Upconversion luminescence spectra of a) $NaY_{1-x}Yb_xF_4$:Tm (0.5%) and b) $NaYbF_4$:Tm (x%) nanocrystal dispersion in oleic acid pumped by a 980 nm laser.

Fig. S2 Non-normalized spectra of upconversion luminescence decay of the NaY_{1-x}Yb_xF₄:Tm (0.5%) nanocrystal dispersion in oleic acid for the a) 800 nm, b) 475 nm and c) 365 nm emissions upon 980 nm excitation for 0-3000 μ s.

Fig. S3 Non-normalized spectra of upconversion luminescence decay of the NaYbF₄:Tm (x%) nanocrystal dispersion in oleic acid for the a) 800 nm, b) 475 nm and c) 365 nm emissions upon 980 nm excitation for 0-3000 μ s.

Yb ³⁺	${}^{3}\mathrm{H}_{4} \rightarrow {}^{3}\mathrm{H}_{6} (800 \text{ nm})$		$^{1}G_{4} \rightarrow {}^{3}H_{6}(475 \text{ nm})$		$^{1}D_{2} \rightarrow {}^{3}H_{6}(365 \text{ nm})$	
(mol %) #	τ(μs)	amplitude	τ(μs)	amplitude	τ(μs)	amplitude
		(%)		(%)		(%)
20	630 ± 8	81	576 ± 2	56	168 ± 0.3	100
40	422 ± 5	80	547 ± 2	50	142 ± 0.3	100
60	378 ± 7	78	224 ± 2	56	138 ± 0.3	100
80	440 ± 5	88	362 ± 2	92	157 ± 0.4	100
100	375 ± 1	97	293 ± 4	77	137 ± 0.3	100
Tm ³⁺	$^{3}H_{4} \rightarrow ^{3}H_{6} (800 \text{ nm})$		${}^{1}G_{4} \rightarrow {}^{3}H_{6}(475 \text{ nm})$		$^{1}D_{2} \rightarrow {}^{3}H_{6} (365 \text{ nm})$	
(mol %)#	τ(μs)	amplitude	τ(μs)	amplitude	τ(μs)	amplitude
		(%)		(%)		(%)
0.05	481 ± 4	100	510 ± 5	100	272 ± 1	100
0.2	470 ± 5	100	427 ± 0.5	100	235 ± 2	100
0.4	430 ± 7	100	358 ± 1	98	169 ± 0.5	100
0.6	321 ± 5	99	256 ± 3	98	125 ± 76	99
0.8	337 ± 2	94	169 ± 2	85	98 ± 0.2	99
1	275 ± 2	87	88 ± 0.5	93	82 ± 0.3	99
5	70 ± 0.5	91	82 ± 3	85	80 ± 10	72

Table S1. Summary of decay times of ${}^{3}H_{4}$, ${}^{1}G_{4}$ and ${}^{1}D_{2}$ level of NaY_{1-x}Yb_xF₄:Tm (0.5%) and NaYbF₄:Tm (x%) with respective relative amplitude.

Note: Only the major lifetime component (with the highest amplitude) in case of multiexponential decay. Samples with 100% amplitude had a single decay time. [#] the percentages are with respect to the added quantity in the synthesis.

Fig. S4 Upconversion luminescence spectra of a) $NaY_{1-x}Yb_xF_4$:Tm (0.5%) and b) $NaYbF_4$:Tm (x%) nanocrystal dispersion in oleic acid pumped by a 980 nm laser.

Fig. S5 EDX analysis of a) large and b) small NaYbF₄:Tm (0.8%) nanoparticles with corresponding SEM images.

Fig. S6 TEM images of hexagonal NaY_{1-x}Yb_xF₄:Tm (0.5%) with different concentrations of Yb³⁺: d) 80 and e) 100% and NaYbF₄:Tm (x%) crystals with different concentrations of Tm³⁺: f) 0.05, g) 0.2, h) 0.4, i) 0.6, j) 0.8, k) 1 and l) 5%.