Supplementary Information

Magnetic Prussian blue nanoparticles for combined enzyme-responsive drug release and photothermal therapy

Peng Xue^{#,a,} Jingnan Bao^{#,b}, Yafeng Wu^a, Yilei Zhang *,^b, Yuejun Kang *,^a

^a 62 Nanyang Drive, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459. E-mail: yuejun.kang@ntu.edu.sg; Tel: (+65) 6316 2894; Fax: (+65) 6794 7553

^b 50 Nanyang Avenue, School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore, 639798. E-mail: ylzhang@ntu.edu.sg; Tel: (+65) 6790 5952; Fax: (+65) 6792 4062

*To whom correspondence should be addressed

[#]These authors contributed equally to this work

Additional Figures

Scheme S1. Synthesis of gelatin-DOX conjugates based on a standard periodate oxidation method.

Figure S1. Comparison of Fe₃O₄@PB@Gel-DOX NPs (a) and pure Fe₃O₄ NPs (b) measured by transmission electron microscopy (TEM).

Figure S2. Size distribution of Fe_3O_4 NPs (a) and Fe_3O_4 @PB NPs (b) measured by dynamic light scattering (DLS).