## Supporting Materials:

## A facile synthesis of vicinal *cis*-diols from olefins catalyzed by in situ

## generated Mn<sub>x</sub>O<sub>y</sub> nanoaggregates

Diğdem DALMIZRAK<sup>a</sup>, Haydar GÖKSU<sup>a,b</sup>, Mehmet Serdar GÜLTEKİN\*<sup>a</sup>

E-mail: gultekin@atauni.edu.tr;

*Generally Procedure:* To a magnetically stirred solution of KMnO<sub>4</sub> (5.0 mmol 0.79g) in water:acetone (1:2, 15 mL) was added olefin (10 mmol) in 5 mL water:aceton (1:2) and then  $H_2O_2$  (30 mmol, 36%, 2.80 mL) was slowly added in mixture partially for an hour in nitrogen atmosphere at 0°C. After completion of the addition, the solution was stirred additional 1 hour. The reaction was monitored by TLC and approximately all of the reaction was finished at 2 h. The ethyl acetate was added to reaction mixture and this mixture was washed with water and dried over sodium sulfate. After removal of the solvent, the residue was determined by comparison of the NMR data with those of the corresponding visinal *cis*-diols. <sup>5</sup>

**H<sub>2</sub>O<sub>2</sub>** concentration determination procedure: To a magnetically stirred solution of KMnO<sub>4</sub> (0.5 eq., 5.0 mmol 0.79g) in water:acetone (1:2, 15 mL) was added olefin (10 mmol) in 5 mL water:aceton (1:2) and then  $H_2O_2$  [36%, (2.0 eq., 20.0 mmol, 1.86 mL) or (3.0 eq., 30.0 mmol 2.80 mL) or (3.5 eq., 35.0 mmol 3.27 mL) or (4.0 eq., 40.0 mmol, 3.72 mL)] was slowly added (in different reaction vessels) in mixture partially for an hour in nitrogen atmosphere at 0°C, according to **table S1**. After completion of the addition, the solution was stirred additional 1 hour. The reaction was monitored by TLC and approximately all of the reaction was finished at 2 h. The ethyl acetate was added to reaction mixture and this mixture was washed with water and dried over sodium sulfate. After removal of the solvent, the residue was determined with the NMR data.

| entry | Olefin | Visinal cis-diol                   | Yields (%) |     |       |     |
|-------|--------|------------------------------------|------------|-----|-------|-----|
|       |        |                                    | 2eq        | 3eq | 3,5eq | 4eq |
| 1     |        |                                    | 74         | 90  | 85    | 82  |
| 2     | 3      |                                    | 67         | 82  | 65    | 63  |
| 3     | 7      |                                    | 72         | 79  | 75    | 71  |
| 4     | 13     | HO<br>HO<br>syn/anti(4:6)<br>14a,b | 56         | 72  | 63    | 50  |
| 5     | 25     | HO OH                              | 70         | 66  | 53    | 49  |

Table S1. H<sub>2</sub>O<sub>2</sub> concentration was optimized by 0.5 eq. KMnO<sub>4</sub> (5.0 mmol).

**Reaction conditions:** All reactions were performed in aqueous acetone (20.0 mL, water– acetone= 1: 2 v/v) using 5.0 mmol KMnO<sub>4</sub>, 10.0 mmol olefin and  $H_2O_2$  in  $N_2$  atm. at 0°C.

## The dihydroxylation reaction with $MnO_2-H_2O_2$ , $Mn_3O_4-H_2O_2$ , in situ generated $Mn_xO_y-H_2O_2$ and some olefins procedure:

To a magnetically stirred solution of manganes oxide derivative  $[(5.0 \text{ mmol}, 0.44g \text{ MnO}_2) \text{ or } (5.0 \text{ mmol}, 1.15g \text{ Mn}_3\text{O}_4)$  or  $(0.4 \text{ g Mn}_x\text{O}_y)$  ] in water:acetone (1:2, 15 mL) was added olefin (10 mmol) in 5 mL water:aceton (1:2) and then H<sub>2</sub>O<sub>2</sub> [(30.0 mmol, 36%, 2.80 mL) or (10.0 mmol, 36%, 0.94 mL)] was slowly added in mixture partially for an hour in nitrogen atmosphere at 0°C, according to **table S2**. After completion of the addition, the solution was stirred additional 1 hour. The reaction was monitored by TLC and approximately all of the reaction was finished at 2 h. The ethyl acetate was added to reaction mixture and this mixture was washed with water and dried over sodium sulfate. After removal of the solvent, the residue was determined with NMR data.





**Table S2.** The oxidation reaction of cyclohexene **3**, but-3-en-2-one **29** and styrene **33** with  $MnO_2-H_2O_2$ ,  $Mn_3O_4-H_2O_2$  and in situ generated  $Mn_xO_y-H_2O_2$ .



| entry | Olefin<br>(10.0 mmol)                  | 5.0 mmol MnO <sub>2</sub> /<br>30.0 mmol H <sub>2</sub> O <sub>2</sub> | 5.0 mmol Mn <sub>3</sub> O <sub>4</sub> /<br>30.0 mmol H <sub>2</sub> O <sub>2</sub> | 5.0 mmol Mn <sub>3</sub> O <sub>4</sub> /<br>10.0 mmol H <sub>2</sub> O <sub>2</sub> | 0.4 g Mn <sub>x</sub> O <sub>y</sub> /<br>30.0 mmol H <sub>2</sub> O <sub>2</sub> | Visinal cis-diol |
|-------|----------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------|
| 1     | 3                                      | No reaction                                                            | 25                                                                                   | 34                                                                                   | 42                                                                                | но но но 4       |
| 2     | H <sub>3</sub> C CH <sub>2</sub><br>29 | No reaction                                                            | 22                                                                                   | 30                                                                                   | 40                                                                                |                  |
| 3     | 33                                     | No reaction                                                            | 20                                                                                   | 27                                                                                   | 36                                                                                | HO OH            |

**Reaction conditions:** All reactions were performed in aqueous acetone (20.0 mL, water-acetone= 1: 2 v/v) using manganese oxide derivatives, olefins and  $H_2O_2$  in  $N_2$  atm. at 0°C.



























