> Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Trifluoromethyl *syn*- or *anti*-γ-amino alcohols by one-pot solvent-free Mannich-type reactions under temperature control

Stefania Fioravanti,* Luca Parise, Alessia Pelagalli, Lucio Pellacani and Laura Trulli

Dipartimento di Chimica, Università di Roma La Sapienza, P.le Aldo Moro 5, I-00185 Roma, Italy

E-mail: stefania.fioravanti@uniroma1.it

i. By 2D NOESY¹H NMR spectra

As reported,¹ starting from a reference cross peak whose interproton distance is known, it was possible to calculate the distances between other protons according to equation $V_X/V_R = (d_R/d_X)^6 (V_R = \text{volume of the reference cross peak; } d_R = \text{corresponding interproton distance; } V_X = \text{volume relative to the unknown distance; } d_X = \text{unknown distance}.$

Considering that the chiral centre on the amine residue is always in *R* configuration, the interproton distance between H_b and the protons H_c is considered as a fixed value and employed as a ruler to determine the distance between H_a and H_b .

On the basis of the optimized geometries of diastereomers, 2.68 Å was found as the medium value of the interproton distance (d_R) between H_b and the protons H_c and the corresponding volume V_R was set at 10 arbitrary units (au). Then, starting from the volumes relative to the cross peaks between H_a and H_b (V_X) determined by NOESY analyses, the interproton distance (d_X) between H_a and H_b were calculated and compared with those determined by optimized geometries.⁴

ii. By chemical transformation

Following a synthetic procedure similar to that reported in the literature, after reaction of *anti*-**9'a** with benzoyl chloride, a hydrogenolysis reaction permitted to remove the benzyl group² leading to the known chiral primary amine **10**,³ the $[\alpha]_D$ value of which corresponds with that reported in the literature {found: $[\alpha]_D = -10.8$ (c = 1.5, CHCl₃); literature³ $[\alpha]_D = -11.5$ (c = 1.5, CHCl₃)}.

1. J. Jeener, B. H. Meier, P. Bachmann and R. R. Ernst, J. Chem. Phys., 1979, 71, 4546.

S. Fioravanti, A. Pelagalli, L. Pellacani, F. Sciubba and M. C. Vergari, *Amino Acids*, 2014, 46, 1961.

^{3.} S. Fustero, F.; Mojarrad, M. D. P. Carrion, J. F. Sanz-Cervera and J. L. Acena, *Eur. J. Org. Chem.*, 2009, 5208.

(2R*,3R*)-3-(Benzylamino)-4,4,4-trifluoro-2-isopropylbutan-1-ol (syn-2a)

L-proline at -20 °C

Chiralcel column; eluent: hexane/2-propanol = 95:5, flow 0.9 mL/min

(2R*)-2-[(1R*)-1-(Benzylamino)-2,2,2-trifluoroethyl]pentan-1-ol (syn-3a)

Electronic Supplementary Material (ESI) for RSC Advances.													
This journal is © The Royal Society of Chemistry 2015													
	7453 7426 73.47	53.80											

(2R*,3R*)-3-(Benzylamino)-4,4,4-trifluoro-2-methylbutan-1-ol (syn-4a)

99	147.02	 	$<_{127.77}^{128.08}$	 			77.42	67.98			23.61

The cross peaks corresponding to the interproton correlations H_b/H_c (distance ruler setted to 10.00 au) and H_a/H_b (1.38 au), corresponding to an interproton distance of 3.74 Å, are evidenced. In Fig. 1 the interproton distance determined on the optimized geometries are reported.

Fig. 1. Optimized geometries of (S,S,R)-7a and of its possible diastereomer (R,R,R)

18

The cross peaks corresponding to the interproton correlations H_b/H_c (distance ruler setted to 10.00 au) and H_a/H_b (2.28 au), corresponding to an interproton distance of 3.44 Å, are evidenced. In Fig. 2 the interproton distance determined on the optimized geometries are reported.

Fig. 2. Optimized geometries of (R,S,R)-7'a and of its possible diastereomer (S,R,R)

(2S,3S)-4,4,4-Trifluoro-2-isopropyl-3-[(R)-1-(4-methoxyphenyl)ethylamino]butan-1-ol (syn-7b)

(2R,3S)-4,4,4-Trifluoro-2-isopropyl-3-[(R)-1-(4-methoxyphenyl)ethylamino]butan-1-ol (anti-7'b)

 $(2R)-2-[(1S)-2,2,2-Trifluoro-1-\{[(1R)-1-phenylethyl]amino\}ethyl]pentan-1-ol~(anti-8'a)$

(2S,3S)-2-Ethyl-4,4,4-trifluoro-3-{[(1R)-1-phenylethyl]amino}butan-1-ol (syn-9a)

(S,S,R)-9a

(*R*,*S*,*R*)-**9'a**

