Electronic supplementary information for

# Ricinodols A-G: New Tetracyclic Triterpenoids as 11β-HSD1

## Inhibitors from Ricinodendron heudelotii

Jin-Hai Yu, Yu Shen, Yan Wu, Ying Leng, Hua Zhang,<sup>\*</sup> and Jian-Min Yue<sup>\*</sup> State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, People's Republic of China E-mails: h.zhang@simm.ac.cn; jmyue@simm.ac.cn; Tel.: +86-21-50806718; Fax.: +86-21-50807088

Table S1. Preliminary assay results of tested compounds against human 11 $\beta$ -HSD1 at 10.0  $\mu$ M.

Table S2. Preliminary assay results of tested compounds against mouse 11 $\beta$ -HSD1 at 10.0  $\mu$ M.

**Figure S1.** Induced CD spectrum of the  $Mo_2^{4+}$  complex for **2** in DMSO **Figure S2.** Induced CD spectrum of the  $Mo_2^{4+}$  complex for **5** in DMSO

Figure S3. <sup>1</sup>H NMR spectrum of ricinodol A (1) in CDCl<sub>3</sub> Figure S4. <sup>13</sup>C NMR spectrum of ricinodol A (1) in CDCl<sub>3</sub> Figure S5. HSQC spectrum of ricinodol A (1) in CDCl<sub>3</sub> Figure S6. <sup>1</sup>H–<sup>1</sup>H COSY spectrum of ricinodol A (1) in CDCl<sub>3</sub> Figure S7. HMBC spectrum of ricinodol A (1) in CDCl<sub>3</sub> Figure S8. ROESY spectrum of ricinodol A (1) in CDCl<sub>3</sub> Figure S9. ESI(+)MS spectrum of ricinodol A (1) Figure S10. ESI(-)MS spectrum of ricinodol A (1) Figure S11. HRESI(-)MS spectrum of ricinodol A (1) Figure S12. IR spectrum of ricinodol A (1)

**Figure S13.** <sup>1</sup>H NMR spectrum of ricinodol B (**2**) in CDCl<sub>3</sub> **Figure S14.** <sup>13</sup>C NMR spectrum of ricinodol B (**2**) in CDCl<sub>3</sub>

Figure S15. HSQC spectrum of ricinodol B (2) in CDCl<sub>3</sub>

Figure S16. HMBC spectrum of ricinodol B (2) in CDCl<sub>3</sub>

Figure S17. ROESY spectrum of ricinodol B (2) in CDCl<sub>3</sub>

Figure S18. ESI(+)MS spectrum of ricinodol B (2)

Figure S19. ESI(–)MS spectrum of ricinodol B (2)

Figure S20. HRESI(+)MS spectrum of ricinodol B (2)

Figure S21. IR spectrum of ricinodol B (2)

Figure S22. <sup>1</sup>H NMR spectrum of ricinodol C (3) in CDCl<sub>3</sub>

Figure S23. <sup>13</sup>C NMR spectrum of ricinodol C (3) in CDCl<sub>3</sub>
Figure S24. HSQC spectrum of ricinodol C (3) in CDCl<sub>3</sub>
Figure S25. <sup>1</sup>H–<sup>1</sup>H COSY spectrum of ricinodol C (3) in CDCl<sub>3</sub>
Figure S26. HMBC spectrum of ricinodol C (3) in CDCl<sub>3</sub>
Figure S27. ROESY spectrum of ricinodol C (3) in CDCl<sub>3</sub>
Figure S28. ESI(+)MS spectrum of ricinodol C (3)
Figure S29. ESI(-)MS spectrum of ricinodol C (3)
Figure S30. HRESI(-)MS spectrum of ricinodol C (3)
Figure S31. IR spectrum of ricinodol C (3)

Figure S32. <sup>1</sup>H NMR spectrum of ricinodol D (4) in CDCl<sub>3</sub> Figure S33. <sup>13</sup>C NMR spectrum of ricinodol D (4) in CDCl<sub>3</sub> Figure S34. HSQC spectrum of ricinodol D (4) in CDCl<sub>3</sub> Figure S35. HMBC spectrum of ricinodol D (4) in CDCl<sub>3</sub> Figure S36. ROESY spectrum of ricinodol C (4) in CDCl<sub>3</sub> Figure S37. ESI(+)MS spectrum of ricinodol D (4) Figure S38. ESI(-)MS spectrum of ricinodol D (4) Figure S39. HRESI(+)MS spectrum of ricinodol D (4) Figure S40. IR spectrum of ricinodol D (4)

Figure S41. <sup>1</sup>H NMR spectrum of ricinodol E (5) in CDCl<sub>3</sub> Figure S42. <sup>13</sup>C NMR spectrum of ricinodol E (5) in CDCl<sub>3</sub> Figure S43. HSQC spectrum of ricinodol E (5) in CDCl<sub>3</sub> Figure S44. HMBC spectrum of ricinodol E (5) in CDCl<sub>3</sub> Figure S45. ROESY spectrum of ricinodol E (5) in CDCl<sub>3</sub> Figure S46. ESI(+)MS spectrum of ricinodol E (5) Figure S47. ESI(-)MS spectrum of ricinodol E (5) Figure S48. HRESI(-)MS spectrum of ricinodol E (5) Figure S49. IR spectrum of ricinodol E (5)

Figure S50. <sup>1</sup>H NMR spectrum of ricinodol F (6) in CDCl<sub>3</sub>

Figure S51. <sup>13</sup>C NMR spectrum of ricinodol F (6) in CDCl<sub>3</sub>

Figure S52. HSQC spectrum of ricinodol F (6) in CDCl<sub>3</sub>

Figure S53. HMBC spectrum of ricinodol F (6) in CDCl<sub>3</sub>

Figure S54. ROESY spectrum of ricinodol F (6) in CDCl<sub>3</sub>

Figure S55. ESI(+)MS spectrum of ricinodol F (6)

**Figure S56.** ESI(–)MS spectrum of ricinodol F (6)

Figure S57. HRESI(–)MS spectrum of ricinodol F (6)

Figure S58. IR spectrum of ricinodol F (6)

**Figure S59.** <sup>1</sup>H NMR spectrum of ricinodol G (**7**) in CDCl<sub>3</sub> **Figure S60.** <sup>13</sup>C NMR spectrum of ricinodol G (**7**) in CDCl<sub>3</sub> **Figure S61.** HSQC spectrum of ricinodol G (**7**) in CDCl<sub>3</sub> **Figure S62.** HMBC spectrum of ricinodol G (**7**) in CDCl<sub>3</sub> Figure S63. ROESY spectrum of ricinodol G (7) in CDCl<sub>3</sub>
Figure S64. ESI(+)MS spectrum of ricinodol G (7)
Figure S65. ESI(-)MS spectrum of ricinodol G (7)
Figure S66. HRESI(-)MS spectrum of ricinodol G (7)
Figure S67. IR spectrum of ricinodol G (7)

| μΜ.                        |        |        |        |         |      |
|----------------------------|--------|--------|--------|---------|------|
| Compds no.                 | Exp. 1 | Exp. 2 | Exp. 3 | Average | SD   |
| 1                          | 63.0%  | 51.3%  | 61.6%  | 58.6%   | 6.4% |
| 2                          | 21.0%  | 17.4%  | 15.8%  | 18.1%   | 2.6% |
| 3                          | 64.3%  | 58.5%  | 59.8%  | 60.8%   | 3.0% |
| 4                          | 62.2%  | 58.5%  | 54.3%  | 58.4%   | 4.0% |
| 5                          | 98.8%  | 94.3%  | 95.4%  | 96.2%   | 2.4% |
| 6                          | 56.9%  | 53.0%  | 53.4%  | 54.4%   | 2.1% |
| 7                          | 55.2%  | 56.1%  | 56.5%  | 56.0%   | 0.6% |
| 8                          | 28.5%  | 28.8%  | 37.0%  | 31.4%   | 4.8% |
| 9                          | 12.1%  | 14.6%  | 19.6%  | 15.4%   | 3.8% |
| 10                         | 35.6%  | 27.8%  | 34.6%  | 32.7%   | 4.2% |
| Glycyrrhetinic acid 1 nM   | 27.6%  | 21.0%  | 19.1%  | 22.6%   | 4.4% |
| Glycyrrhetinic acid 10 nM  | 61.1%  | 67.6%  | 69.7%  | 66.1%   | 4.5% |
| Glycyrrhetinic acid 100 nM | 95.8%  | 98.1%  | 94.7%  | 96.2%   | 1.8% |

Table S1. Preliminary assay results of tested compounds against human 11β-HSD1 at 10.0

| μΜ.                        |        |        |        |         |      |
|----------------------------|--------|--------|--------|---------|------|
| Compds no.                 | Exp. 1 | Exp. 2 | Exp. 3 | Average | SD   |
| 1                          | 39.3%  | 40.2%  | 35.6%  | 38.4%   | 2.5% |
| 2                          | 41.6%  | 40.8%  | 33.4%  | 38.6%   | 4.5% |
| 3                          | 44.9%  | 47.9%  | 40.2%  | 44.3%   | 3.9% |
| 4                          | 35.8%  | 39.0%  | 32.1%  | 35.6%   | 3.5% |
| 5                          | 95.6%  | 96.4%  | 91.5%  | 94.5%   | 2.6% |
| 6                          | 74.2%  | 78.5%  | 73.9%  | 75.5%   | 2.6% |
| 7                          | 67.8%  | 64.1%  | 59.9%  | 63.9%   | 3.9% |
| 8                          | 28.2%  | 25.9%  | 25.6%  | 26.6%   | 1.4% |
| 9                          | 38.7%  | 44.0%  | 36.7%  | 39.8%   | 3.8% |
| 10                         | 38.8%  | 42.0%  | 35.9%  | 38.9%   | 3.1% |
| Glycyrrhetinic acid 1 nM   | 21.8%  | 17.4%  | 15.3%  | 18.2%   | 3.3% |
| Glycyrrhetinic acid 10 nM  | 55.9%  | 52.7%  | 51.5%  | 53.4%   | 2.3% |
| Glycyrrhetinic acid 100 nM | 93.3%  | 95.5%  | 95.9%  | 94.9%   | 1.4% |

Table S2. Preliminary assay results of tested compounds against mouse  $11\beta$ -HSD1 at 10.0



**Figure S1.** Induced CD spectrum of the  $Mo_2^{4+}$  complex for **2** in DMSO



**Figure S2.** Induced CD spectrum of the  $Mo_2^{4+}$  complex for **5** in DMSO



Figure S3. <sup>1</sup>H NMR spectrum of ricinodol A (1) in CDCl<sub>3</sub>



Figure S4. <sup>13</sup>C NMR spectrum of ricinodol A (1) in CDCl<sub>3</sub>



Figure S5. HSQC spectrum of ricinodol A (1) in CDCl<sub>3</sub>



**Figure S6.** <sup>1</sup>H–<sup>1</sup>H COSY spectrum of ricinodol A (1) in CDCl<sub>3</sub>



Figure S7. HMBC spectrum of ricinodol A (1) in CDCl<sub>3</sub>





## Figure S9. ESI(+)MS spectrum of ricinodol A (1)



| Bruker Daltonics DataAnalysis 3.1 | printed: | 05/31/12 | 09:15:36 | • | Page 1 of 1 |  |
|-----------------------------------|----------|----------|----------|---|-------------|--|

## Figure S10. ESI(–)MS spectrum of ricinodol A (1)



15

## Figure S11. HRESI(-)MS spectrum of ricinodol A (1)

Elemental Composition Report

## Page 1

Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 121 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 10-60 H: 1-110 O: 0-30 YJH LCT PXE KE324

01-Jun-2012 14:26:51 1: TOF MS ES-2:25e+004 RHA3-5212 20 (0.422) AM2 (Ar,10000.0,0.00,1.00); ABS; Cm (14:48) 519.3677 100-983.7170 % 509.3400 520.3720 537.3618 295.2272 341.2309 369.2248 187.0965 573.3312 739.5198 769.5985 799.5562 937.6590 ,∔L| m/z 1000 200 300 400 500 600 700 800 900 Minimum: -1.5 50.0 Maximum: 3.0 3.0 Mass Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula 519.3677 519.3686 -0.9 -1.7 6.5 102.3 0.0 C31 H51 O6



Figure S12. IR spectrum of ricinodol A (1)



Figure S13. <sup>1</sup>H NMR spectrum of ricinodol B (2) in CDCl<sub>3</sub>



Figure S14. <sup>13</sup>C NMR spectrum of ricinodol B (2) in CDCl<sub>3</sub>



Figure S15. HSQC spectrum of ricinodol B (2) in CDCl<sub>3</sub>



Figure S16. HMBC spectrum of ricinodol B (2) in CDCl<sub>3</sub>



## Figure S18. ESI(+)MS spectrum of ricinodol B (2)





## Figure S19. ESI(-)MS spectrum of ricinodol B (2)



| Deal Data Andreas                 |          |          |          | •           |
|-----------------------------------|----------|----------|----------|-------------|
| Bruker Daltonics DataAnalysis 3.1 | printed: | 05/18/12 | 09:55:27 | Page 1 of 1 |

# Figure S20. HRESI(+)MS spectrum of ricinodol B (2)

| lementa                            | n composi                       | tion Report                                       |                                          |                                                         |                                  |                      |                                       |          |                 |                | Page                                                                     |
|------------------------------------|---------------------------------|---------------------------------------------------|------------------------------------------|---------------------------------------------------------|----------------------------------|----------------------|---------------------------------------|----------|-----------------|----------------|--------------------------------------------------------------------------|
| ingle Ma                           | ass Analys                      | is                                                |                                          |                                                         |                                  |                      |                                       |          |                 |                |                                                                          |
| ierance                            | = 3.0 PPM                       | / DBE: min =                                      | -1.5. max = :                            | 50.0                                                    |                                  |                      |                                       |          |                 |                |                                                                          |
| ement pr                           | rediction: Off                  |                                                   |                                          |                                                         |                                  |                      |                                       |          |                 |                |                                                                          |
| imber of                           | isotope peal                    | ks used for i-F                                   | IT = 3                                   |                                                         |                                  |                      |                                       |          |                 |                |                                                                          |
|                                    | • •                             |                                                   |                                          |                                                         |                                  |                      |                                       |          |                 |                |                                                                          |
| noisotopi                          | ic Mass, Even                   | Electron lons                                     |                                          |                                                         |                                  |                      |                                       |          |                 |                |                                                                          |
| 3 formula                          | (e) evaluated                   | with 1 results w                                  | ithin limits (up                         | to 50 bes                                               | it isotopic ma                   | tches for ea         | ach mass)                             |          |                 |                |                                                                          |
| ments U                            | sed:                            |                                                   |                                          |                                                         |                                  |                      | · · · · · · · · · · · · · · · · · · · |          |                 |                |                                                                          |
| 10-60                              | H: 1-110 C                      | ): 0-30 Na: 0                                     | )-1                                      |                                                         |                                  |                      |                                       |          |                 |                |                                                                          |
| 1                                  |                                 |                                                   |                                          | LCT P)                                                  | (E KE324                         |                      |                                       |          |                 | 18             | -May-201                                                                 |
| 2-3112-1                           | 2 39 (1 847) 44                 | 42 (Az 10000 n n                                  | 00 1 001 4 86.                           |                                                         |                                  |                      |                                       |          |                 |                | 14:01:4                                                                  |
|                                    | (o. o+ - )                      | ine (via, 10000.0,0.                              | vu, i.vu), noa; t                        | JMI (33:53)                                             |                                  |                      |                                       |          |                 | 1: TO          | F MS ES                                                                  |
|                                    |                                 |                                                   |                                          |                                                         |                                  |                      |                                       |          |                 |                |                                                                          |
| <b>L</b>                           |                                 |                                                   |                                          |                                                         |                                  |                      |                                       |          |                 | ~~~            | 3.25+00                                                                  |
| Ļ                                  |                                 |                                                   |                                          |                                                         |                                  |                      |                                       |          |                 | 967.           | 3.25e+00<br>7043                                                         |
| ר<br> <br>                         |                                 |                                                   |                                          |                                                         |                                  |                      |                                       |          |                 | 967.           | 3.25e+00<br>7043                                                         |
|                                    |                                 |                                                   |                                          |                                                         |                                  |                      |                                       |          |                 | 967.           | 3.25e+00<br>7043<br>958.7081                                             |
|                                    |                                 |                                                   | 4                                        | 95.3439                                                 |                                  |                      |                                       |          |                 | 967.           | 3.25e+00<br>7043<br>958.7081                                             |
|                                    |                                 |                                                   | 4                                        | 95.3439                                                 |                                  |                      |                                       |          |                 | 967.           | 3.25+00<br>7043<br>968.7081                                              |
|                                    |                                 |                                                   | 41                                       | 95.3439                                                 | 91                               |                      |                                       |          | 064             | 967.           | 3.25e+00<br>7043<br>968.7081<br>969.7128                                 |
| 105.042                            | <sup>25</sup> 192.0821          | 317,8959 <sup>41</sup>                            | 49<br>1.2686 490.38                      | 95.3439<br>496.344<br>79                                | 91<br> _547.4539 <sup>6</sup>    | <b>64</b> .3705      | 721.0234                              | 885.6288 | 965             | 967.<br>5.1921 | 3.258+00<br>7043<br>968.708<br>969.7125<br>970.7165                      |
| 105.042                            | 25 192.0821<br>200              | 317.8959 <sup>41°</sup><br>300                    | 490.38<br>490.38                         | 95.3439<br>496.344<br>79                                | 91<br>547.4539 6<br>600          | <b>64.3705</b>       | 721.0234                              | 885.6288 | 965<br>3        | 967.<br>5.1921 | 3.25e+00<br>7043<br>968.7081<br>969.7125<br>970.7165                     |
| 105.042                            | 25 192.0821<br>200              | 317.6959 <sup>41</sup><br>300                     | 4)<br>1.2686 490.38<br>400               | 95.3439<br>496.344<br>79<br>500                         | 91<br>547.4539 6<br>600          | <b>54.3705</b>       | 721.0234                              | 885.6288 | 965<br>3<br>900 | 967.<br>5.1921 | 3.25e+00<br>7043<br>968.7081<br>969.7125<br>970.7168<br>1000             |
| 105.042<br>1000                    | 25 192.0621<br>200              | 317,8959 <sup>411</sup><br>300                    | 41<br>1.2686 490.38<br>400               | 95.3439<br>496.34<br>79<br>500<br>-1.5                  | 91<br>547.4539 6<br>600          | 64.3705              | 721.0234                              | 885.6288 | 965             | 967.<br>5.1921 | 3.25e+00<br>7043<br>968.7081<br>969.7125<br>970.7165<br>970.7165         |
| 105.042<br>100<br>1mum :<br>imum : | 25 192.0821<br>200              | <b>317.6959<sup>41</sup></b><br><b>300</b><br>3.0 | 490.38<br>1.2686 490.38<br>400<br>3.0    | 95.3439<br>496.34<br>79<br>500<br>-1.5<br>50.0          | 91<br>547.4539 6<br>600          | 64.3705<br>700       | 721.0234<br>                          | 885.6288 | 965             | 967.<br>5.1921 | 3.25e+00<br>7043<br>968.7081<br>969.7125<br>970.7165<br>                 |
| 105.042<br>1000<br>imum:<br>imum:  | 25 192.0621<br>200<br>Calc. Mas | 317,6959 <sup>41</sup><br>300<br>3.0<br>:5 mDa    | 41<br>1.2686 490.38<br>400<br>3.0<br>PPM | 496.3439<br>496.344<br>79<br>500<br>-1.5<br>50.0<br>DBE | 91<br>547.4539 6<br>600<br>i-FIT | 64.3705 7<br>700 i−i | 721.0234<br>800<br>FIT (Norm)         | 885.6288 | 965<br>3<br>900 | 967.<br>5.1921 | 3.25e+00<br>7043<br>968.7081<br>969.7125<br>970.7165<br>970.7166<br>1000 |



Figure S21. IR spectrum of ricinodol B (2)



Figure S22. <sup>1</sup>H NMR spectrum of ricinodol C (3) in CDCl<sub>3</sub>



Figure S23. <sup>13</sup>C NMR spectrum of ricinodol C (3) in CDCl<sub>3</sub>



Figure S24. HSQC spectrum of ricinodol C (3) in CDCl<sub>3</sub>



**Figure S25.** <sup>1</sup>H–<sup>1</sup>H COSY spectrum of ricinodol C (**3**) in CDCl<sub>3</sub>



Figure S26. HMBC spectrum of ricinodol C (3) in CDCl<sub>3</sub>



Figure S27. ROESY spectrum of ricinodol C (3) in CDCl<sub>3</sub>

## Figure S28. ESI(+)MS spectrum of ricinodol C (3)



Bruker Daltonics DataAnalysis 3.1 printed: 05/18/12 09:55:13 Page 1 of 1

## Figure S29. ESI(-)MS spectrum of ricinodol C (3)



| Bruker Daltonics DataAnalysis 3.1 | printed: | 05/18/12 | 09:55:17 | Page 1 of 1 |
|-----------------------------------|----------|----------|----------|-------------|
|                                   |          |          |          |             |

## Figure S30. HRESI(-)MS spectrum of ricinodol C (3)

## **Elemental Composition Report**

### Page 1

Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 121 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 10-60 H: 1-110 O: 0-30 YJH LCT PXE KE324

| YJH                  |                    |                 |              | LCT PXE               | KE324   |             |          |              | 18-May-2012                            |
|----------------------|--------------------|-----------------|--------------|-----------------------|---------|-------------|----------|--------------|----------------------------------------|
| RHA3-61 16           | (0.351) AM2 (Ar,10 | 000.0,0.00,1.00 | ); ABS; Cm ( | 5:30)                 |         |             |          |              | 14:18:18<br>1: TOF MS ES-<br>8 17e+004 |
| 100<br>%             |                    |                 | 50           | 519.3673<br>9.3386 55 | 8.3577  |             |          |              | 983.7148                               |
| 107.99               | 18 265.14          | 79 347.1974     | 462.2        | 2979                  | 605.312 | 21 739.5170 | 787.6093 | 813.5702 936 | 3.6733                                 |
| 100                  | 200                | 300             | 400          | 500                   | 600     | 700         | 800      | 900          | 1000                                   |
| Minimum:<br>Maximum: |                    | 3.0             | 3.0          | -1.5<br>50.0          |         |             |          |              |                                        |
| Mass                 | Calc. Mass         | mDa             | PPM          | DBE                   | i-FIT   | i-FIT       | (Norm)   | Formula      |                                        |
| 519.3673             | 519.3686           | -1.3            | -2.5         | 6.5                   | 123.9   | 0.0         |          | СЗ1 Н51      | 06                                     |
|                      |                    |                 |              |                       |         |             |          |              |                                        |

Figure S31. IR spectrum of ricinodol C (3)




Figure S32. <sup>1</sup>H NMR spectrum of ricinodol D (4) in CDCl<sub>3</sub>



Figure S33. <sup>13</sup>C NMR spectrum of ricinodol D (4) in CDCl<sub>3</sub>



Figure S34. HSQC spectrum of ricinodol D (4) in CDCl<sub>3</sub>



Figure S35. HMBC spectrum of ricinodol D (4) in CDCl<sub>3</sub>



### Figure S37. ESI(+)MS spectrum of ricinodol D (4)



Bruker Daltonics DataAnalysis 3.1 printed: 10/11/13 09:14:11 Page 1 of 1

### Figure S38. ESI(-)MS spectrum of ricinodol D (4)



Bruker Daltonics DateAnelysis 3.1 printed: 10/11/13 09:14:13 Page 1 of 1

### Figure S39. HRESI(+)MS spectrum of ricinodol D (4)

Elemental Composition Report

#### Page 1

Single Mass Analysis Tolerance = 4.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 191 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 5-80 H: 2-120 O: 0-20 Na: 0-1 RHA3-62 LCT PXE KE324 LCT PXE KE324

|                |                      |            |               |                   | LCT        | PXE KE324         |          |          |                    |                                       |                       | 03-Sen-2012                                    |
|----------------|----------------------|------------|---------------|-------------------|------------|-------------------|----------|----------|--------------------|---------------------------------------|-----------------------|------------------------------------------------|
| RHA3-          | -62_0903 27 (0       | ).582) AM2 | ? (Ar,10000.0 | ,0.00,1.00); AB   | S; Cm (26: | 38)               |          |          |                    |                                       | 1: <sup>-</sup><br>94 | 15:56:34<br>FOF MS ES+<br>1.97e+004<br>37.7023 |
| %-             |                      |            |               |                   | 495.3440   | I                 |          |          |                    |                                       |                       | <b>968.705</b> 1                               |
| 0              | 118.4756<br>118.9673 | 2          | 0.1758        | 455.3<br>437.3426 | 536        | 53704<br>537.3734 | 611.4272 | 731.5151 | 787.2943<br> 788.2 | 2972                                  | 965.68                | 969.7096<br>1 970.7137                         |
| 100            | 20                   | 0          | 300           | 400               | 500        | 600               |          | 700      | 600                | · · · · · · · · · · · · · · · · · · · | 900                   |                                                |
| Minim<br>Maxim | um:<br>um;           |            | 3.0           | 4.0               | -1.<br>50. | 5<br>0            |          |          |                    |                                       |                       | 1000                                           |
| Mass           | Calc                 | . Mass     | mDa           | PPM               | DBE        | i-1               | FIT      | i-FIT    | (Norm)             | Form                                  | 1.                    |                                                |
| 495.34         | 440 495.             | 3450       | -1.0          | -2.0              | 6.5        | 60.               | . 8      | 0.0      | (                  | C30                                   | H48 04                | Na                                             |

Figure S40. IR spectrum of ricinodol D (4)





Figure S41. <sup>1</sup>H NMR spectrum of ricinodol E (5) in CDCl<sub>3</sub>



Figure S42. <sup>13</sup>C NMR spectrum of ricinodol E (5) in CDCl<sub>3</sub>



Figure S43. HSQC spectrum of ricinodol E (5) in CDCl<sub>3</sub>



Figure S44. HMBC spectrum of ricinodol E (5) in CDCl<sub>3</sub>



.....

Figure S45. ROESY spectrum of ricinodol E (5) in CDCl<sub>3</sub>

### Figure S46. ESI(+)MS spectrum of ricinodol E (5)



# Figure S47. ESI(–)MS spectrum of ricinodol E (5)

|                                                                                             |                                                   |                                                  | splay Repor                                    | t                                                       |                             |                                  |              |
|---------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|------------------------------------------------|---------------------------------------------------------|-----------------------------|----------------------------------|--------------|
| Analysis Info<br>Analysis Name<br>Method<br>Sample Name<br>Comment                          | 014-2601.D<br>Copy of DSOP!<br>yjm-RHA2-3114<br>W | WS2N.M<br>1-2                                    |                                                | Acquisition Dat<br>Operator<br>Instrument               | e 04/26/<br>Admin<br>esquin | 12 22:48<br>istrator<br>s3000plu | 16<br>Ja     |
| Acquisition Pan<br>on Source Type<br>Jass Range Mode<br>Capillary Exit<br>Accumulation Time | ESI<br>Std/Normal<br>-158.5 Volt<br>15000 #2      | ion Polarity<br>Scan Begin<br>Sidm 1<br>Averages | Negative<br>100 m/z<br>-40.0 Volt<br>3 Spectra | Alternating loc<br>Scan End<br>Trap Drive<br>Auto MS/MS | Polarity                    | off<br>1750 m<br>92.9<br>on      | hz.          |
| rtens.<br>x10 <sup>7</sup>                                                                  |                                                   |                                                  |                                                |                                                         | 01                          | 4-2601.D                         | TIC -AILMS   |
| 1.0                                                                                         |                                                   |                                                  | 1                                              |                                                         |                             |                                  |              |
| 0.5                                                                                         |                                                   |                                                  | Å                                              |                                                         |                             |                                  |              |
| ×10 <sup>5</sup>                                                                            | <u> </u>                                          |                                                  |                                                | <u> </u>                                                | 014                         | -2601.D:                         | TIC -All MSn |
| 1.0                                                                                         |                                                   |                                                  |                                                |                                                         |                             |                                  |              |
| 0.5                                                                                         |                                                   |                                                  |                                                | •                                                       |                             |                                  |              |
| 0.0                                                                                         |                                                   |                                                  | <b>1</b>                                       |                                                         |                             |                                  |              |
| mAU                                                                                         |                                                   |                                                  |                                                | 014-250                                                 | 11.D: UV C                  | hromatogr                        | am, 200 nm   |
| 1000                                                                                        |                                                   |                                                  |                                                |                                                         |                             |                                  |              |
| 500                                                                                         |                                                   | 4.<br>- 1.                                       |                                                |                                                         |                             |                                  |              |
| °                                                                                           | 2                                                 |                                                  |                                                |                                                         | <u> </u>                    |                                  |              |
| -                                                                                           | -                                                 | ······································           | •                                              |                                                         |                             | 14                               | i me (minj   |
| tens.                                                                                       |                                                   |                                                  |                                                |                                                         |                             | -MS 83                           | 3min (19496) |
| tens                                                                                        |                                                   |                                                  |                                                |                                                         |                             | ,                                |              |
| tens.<br>x107-<br>1.0-                                                                      |                                                   | 517.6                                            |                                                |                                                         |                             |                                  |              |
| tens.<br>107-<br>0.8-<br>0.6-                                                               |                                                   | 517.6                                            |                                                |                                                         |                             | ,                                |              |
| tens.<br>x107<br>1.0-<br>0.8-<br>0.6-<br>0.4-                                               |                                                   | 517.8                                            |                                                |                                                         |                             |                                  |              |
| tens.<br>1.07<br>0.8<br>0.6<br>0.4<br>0.2                                                   |                                                   | 517.6                                            |                                                |                                                         |                             |                                  |              |
| tens.<br>x107<br>1.0<br>0.8<br>0.6<br>0.4<br>0.2<br>0.0                                     |                                                   | 517.6                                            |                                                |                                                         |                             |                                  |              |
| tens.<br>x107<br>0.8<br>0.6<br>0.4<br>0.2<br>0.0                                            |                                                   | 517.6                                            |                                                |                                                         |                             |                                  |              |
| tens.<br>x107<br>1.0<br>0.8<br>0.6<br>0.4<br>0.2<br>0.0                                     |                                                   | 517.6                                            |                                                |                                                         |                             |                                  |              |
| tens.<br>x107<br>1.0<br>0.8<br>0.6<br>0.4<br>0.2<br>0.0                                     |                                                   | 517.8                                            |                                                |                                                         |                             |                                  |              |
| tens.<br>x107<br>1.0<br>0.8<br>0.6<br>0.4<br>0.2<br>0.0                                     | -<br>-                                            | 517.6                                            |                                                |                                                         |                             |                                  |              |
| tens.<br>x107<br>1.0<br>0.8<br>0.6<br>0.4<br>0.2<br>0.0                                     |                                                   | 517.8                                            |                                                |                                                         |                             |                                  |              |

| Bruker Daltonics DataAnalysis 3.1 | printed: | 04/27/12 | 09:09:59 | Page 1 of 1 |
|-----------------------------------|----------|----------|----------|-------------|
|                                   |          |          |          |             |
|                                   |          |          |          |             |

- -

### Figure S48. HRESI(-)MS spectrum of ricinodol E (5)

**Elemental Composition Report** 

Page 1

Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 179 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 5-80 H: 2-120 O: 0-20 Na: 0-1 RHA3-3114-2 LCT PXE KE324

| RHA3-3114-2                                                                   |                  |       |          |      | LCT PX       | E KE324      |                   | 27-Aug-201        |        |                    |  |  |
|-------------------------------------------------------------------------------|------------------|-------|----------|------|--------------|--------------|-------------------|-------------------|--------|--------------------|--|--|
| RHA3-3114-2_0827 42 (0.934) AM2 (Ar,10000.0,0.00,1.00); ABS; Cm (42:56) 1: TO |                  |       |          |      |              |              |                   |                   | 1: TOF | 09:41:12<br>MS ES- |  |  |
| 100                                                                           |                  |       |          |      | 471.3        | 9471         |                   |                   | 2.:    | 27e+004            |  |  |
| %                                                                             |                  |       |          |      |              | 472.3507     |                   | 485.3             | 260    |                    |  |  |
|                                                                               | 457.3072 461.016 |       | 465.1799 |      | 469.3308     | 473.3541 477 | .1670 479.2555 48 | 479.2555 483.3086 |        |                    |  |  |
| 45                                                                            | 55.0             | 460.0 | 465.     | 0    | 470.0        | 475.0        | 480.0             | 485.              | 0<br>0 | · m/z              |  |  |
| Minimum:<br>Maximum:                                                          | :                |       | 5.0      | 3.0  | -1.5<br>50.0 |              |                   |                   |        |                    |  |  |
| Mass                                                                          | Calc. N          | lass  | mDa      | PPM  | DBE          | i-FIT        | i-FIT (Norm)      | Formul            | a      |                    |  |  |
| 471.3471                                                                      | 471.343          | 4     | -0.3     | -0.6 | 7.5          | 161.7        | 0.0               | сзо н             | 147 04 |                    |  |  |



Figure S49. IR spectrum of ricinodol E (5)



## Figure S50. <sup>1</sup>H NMR spectrum of ricinodol F (6) in CDCl<sub>3</sub>



Figure S51. <sup>13</sup>C NMR spectrum of ricinodol F (6) in CDCl<sub>3</sub>



Figure S52. HSQC spectrum of ricinodol F (6) in CDCl<sub>3</sub>



Figure S53. HMBC spectrum of ricinodol F (6) in CDCl<sub>3</sub>





### Figure S55. ESI(+)MS spectrum of ricinodol F (6)



Bruker Daltonics DataAnalysis 3.1 printed: 04/24/12 14:36:01 Page 1 of 1

--- ---

1

60

### Figure S56. ESI(-)MS spectrum of ricinodol F (6)



| ······································ | A 4 4 4 |          |          |          |   |             |
|----------------------------------------|---------|----------|----------|----------|---|-------------|
| Bruker Dattonics DataAnalysis 3.1      |         | printed: | 04/24/12 | 14:38:04 | • | Page 1 of 1 |

- -

61

#### Figure S57. HRESI(-)MS spectrum of ricinodol F (6)

#### **Elemental Composition Report** Page 1 Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 121 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 10-80 H: 1-110 O: 0-30 04-May-2012 18:19:21 1: TOF MS ES-3.70e+004 963.7169 yjh LCT PXE KE324 RHA2-3112-3 17 (0.335) AM2 (Ar, 10000.0,0.00,1.00); ABS; Cm (4:21) 100-% 519.3685 509.3397 536.3598 981.7021 445.2827<sup>507.3245</sup> 537.3609 600.3743 739.5179 265.1489 145.9368 325.1814 799.5566 873.6517 979.7134 0 J m/z 700 750 800 550 600 100 150 200 250 300 350 400 450 500 650 850 900 950 Minimum: Maximum: -1.5 5.0 3.0 50.0 Mass Calc. Mass DBE mDa PPM i-FIT i-FIT (Norm) Formula 519.3685 519.3686 -0.1 114.6 -0.2 6.5 0.0 C31 H51 O6







Figure S59. <sup>1</sup>H NMR spectrum of ricinodol G (7) in CDCl<sub>3</sub>



Figure S60. <sup>13</sup>C NMR spectrum of ricinodol G (7) in CDCl<sub>3</sub>



Figure S61. HSQC spectrum of ricinodol G (7) in CDCl<sub>3</sub>



Figure S62. HMBC spectrum of ricinodol G (7) in CDCl<sub>3</sub>



### Figure S64. ESI(+)MS spectrum of ricinodol G (7)



Bruker Dattonics DataAnalysis 3.1 printed: 04/24/12 14:36:07 Page 1 of 1

### Figure S65. ESI(-)MS spectrum of ricinodol G (7)



Bruker Dattonics DataAnalysis 3.1 printed: 04/24/12 14:36:10 Page 1 of 1

### Figure S66. HRESI(-)MS spectrum of ricinodol G (7)

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 121 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 10-80 H: 1-110 O: 0-30 yih LCT PXE KE324

LCT PXE KE324 04-May-2012 16:24:53 1: TOF MS ES-4.20a+004 983.7165 RHA2-3112-4 36 (0.759) AM2 (Ar, 10000.0,0.00, 1.00); ABS; Cm (23:42) 100 % 519.3675 536.3580 509.3391 537.3618 381.2194 507.3226 571.3291 645.4368 716.5317 739.5122 981.7002 799.5560815.5739 907.7100 ĻĻ<sub>im/z</sub> 1000 400 500 450 550 600 650 700 750 800 850 900 950 Minimum: Maximum: -1.5 50.0 5.0 3.0 Mass Calc. Mass mDa PPM D8E i-FIT i-FIT (Norm) Formula 519.3675 519.3686 -1.1 -2.1 6.5 106.5 0.0 C31 H51 O6

Figure S67. IR spectrum of ricinodol G (7)

