Supplementary information

Domino transformation of isoxazoles to 2,4-dicarbonylpyrroles under Fe/Ni relay catalysis

Ekaterina E. Galenko, Alexey V. Galenko, Alexander F. Khlebnikov,* Mikhail S. Novikov

Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr. 26, 198504, St. Petersburg, Russia *Corresponding author. Tel: +7 812 4286733, Fax: +7 812 4286939, e-mail: *a.khlebnikov@spbu.ru*

List of Contents

General methods	1
Synthesis of starting materials	2
General procedure for synthesis of pyrrole derivatives by reaction of isoxazoles with 1,3-dicarbonyl compounds	2
References	10
NMR Spectra	11

General methods

Melting points were determined on a capillary melting point apparatus Stuart® SMP30. ¹H (300 MHz, 400 MHz) and ¹³C (75 MHz, 100 MHz) NMR spectra were determined in CDCl₃ and DMSO-d₆ with Bruker DPX 300 and Bruker AVANCE III 400. Chemical shifts (δ) are reported in parts per million downfield from tetramethylsilane (TMS $\delta = 0.00$); ¹H NMR spectra were calibrated according to the residual peak of CDCl₃ (7.26 ppm) or DMSO-d₆ (2.50 ppm). For all new compounds ¹³C{¹H} and ¹³C DEPT135 were recorded and calibrated according to the peak of CDCl₃ (77.00 ppm) or DMSO-d₆ (39.51 ppm). Mass spectra were recorded on a Bruker maXis HRMS-ESI-QTOF, electrospray ionization, positive mode. IR-spectra were recorded on a Bruker FT-IR spectrometer Tensor 27 for tablets in KBr, only characteristic absorption is indicated. Thin-layer chromatography (TLC) was conducted on aluminium sheets with 0.2 mm silica gel (fluorescent indicator, Macherey-Nagel).

The starting isoxazoles were synthesized as follows: (1) 3-substituted isoxazol-5(4*H*)-ones were obtained from alkyl 3-oxopropanoates and hydroxylamine hydrochloride according to the literature procedure [1], isoxazol-5(4*H*)-ones were then converted to 3-substituted 5-chloroisoxazoles with phosphorous oxychloride [2], and isoxazoles **1a**, **1b**, **1c** were prepared by nucleophilic substitution of chlorine; (2) the corresponding isoxazole-5(4*H*)-ones were treated with diazomethane solution to give isoxazoles **1d**, **1e**, **1f**, **1g**, **1h** [3]. The spectral and physical data for known compounds corresponds to published data: **1a** [3], **1b** [4], **1d** [2], **1f** [5], **1g** [2], **1h** [6]. Commercial pentane-2,4-dione, 5,5-dimethylcyclohexane-1,3-dione, ethyl 3-oxobutanoate, ethyl 3-oxo-3-phenylpropanoate and 3-oxo-*N*-phenylbutanamide were used without any purification.

Synthesis of starting materials

3-(4-(Dimethylamino)phenyl)isoxazol-5(4H)-one. The mixture of ethyl 3-(4-(dimethylamino)phenyl)-3-oxopropanoate (2.35 g, 0.01 mol) and hydroxylamine hydrochloride (2.10 g, 0.03mol) was stirred and heated to reflux in water (70 mL). The mixture was refluxed for 10 minutes and EtOH (100 mL) was added to the reaction. Reaction was stirred under reflux for 1 hour, then was cooled to ambient temperature and neutralized by 4% NaHCO₃. The residue formed was filtered off, washed with water, EtOH, and dried on air. Pale yellow solid, 1.80 g (88%), mp 185-187 °C (dec.) (methanol). Product (in DMSO) is a mixture of 2 isomers: (3-(4-(dimethylamino)phenyl)isoxazol-5(4H)-one and 5-hydroxy-3-(4-(dimethylamino)phenylisoxazole at 1/1 ratio. ¹H NMR (DMSO-d₆): $\delta = 2.99$ (s, 12H), 4.22 (s, 2H), 5.52 (s, 1H), 6.77 (d, J=7.5 Hz, 4H), 7.51 (d, J=4.4 Hz, 4H), 12.41 (br s, 1H). 13 C NMR (DMSO-d₆): δ = 34.5 (CH₂), 39.6 (CH₃), 111.5 (CH), 114.3 (C) 127.6 (CH), 127.9 (CH), 152.3 (C), 164.2 (C), 172.4 (C), 176.6 (C). ESI/HRMS (m/z): 227.0791 calcd for C₁₁H₁₂N₂NaO₂ [M+Na]⁺, found 227.0783. IR (KBr, cm⁻¹): v 1795, 1605, 1531, 1165.

3-(4-(Dimethylamino)phenyl)-5-methoxyisoxazole (1e). To a stirred suspension 3-(4-(dimethylamino)phenyl)isoxazol-5(4*H*)-one (1.02 g, 5 mmol) in ether (20 mL) diazomethane, prepared from *N*-nitroso-*N*-methylurea (1.55 g, 15 mmol), in ether (30 mL) was added. The mixture was stirred for 1 day, and the solvent was evaporated. The residue was recrystallized from methanol (hot solution was decanted and the residue was thrown off). Pale yellow solid, 0.31g (28%), mp 119-121 °C (methanol). ¹H NMR (CDCl₃): δ = 3.00 (s, 6H), 4.01 (s, 3H), 5.44 (s, 1H), 6.72 (d, J=8.5 Hz, 2H), 7.62 (d, J=8.5 Hz, 2H). ¹³C NMR (DMSO-d₆): δ = 40.2 (CH₃), 58.6 (CH₃), 74.7 (CH), 111.9 (CH), 117.0 (C), 127.4 (CH), 151.5 (C), 164.2 (C), 174.0 (C). ESI/HRMS (m/z): 241.0947 calcd for C₁₂H₁₄N₂NaO₂ [M+Na]⁺, found 241.0944. IR (KBr, cm⁻¹): v 1633, 1491, 1355, 1161.

3-Phenyl-5-(pyrrolidin-1-yl)isoxazole (**1c**). The suspension of 5-chloro-3-phenylisoxazole (1.45 g, 8.1 mmol), pyrrolidine (1.15 g, 1.4 mL, 16.2 mmol) and potassium carbonate (3.60 g, 26 mmol) were stirred in DMF (15 ml) for 5 days at room temperature (monitored by TLC). The reaction mixture was poured into water, the residue was filtered off, washed with water and recrystallized from methanol. Colorless solid, 1.00 g (58%), mp 110-112 °C (methanol). ¹H NMR (CDCl₃): $\delta = 1.97$ -2.03 (m, 4H), 3.42-3.47 (m, 4H), 5.13 (s, 1H), 7.39-7.43 (m, 3H), 7.74-7.77 (m, 2H). ¹³C NMR (DMSO-d₆): $\delta = 25.5$ (CH₂), 47.8 (CH₂), 74.1 (CH₃), 126.6(CH), 128.5 (CH), 129.4 (CH), 130.3 (C), 163.5 (C), 169.2 (C). ESI/HRMS (m/z): 237.0998 calcd for C₁₃H₁₄N₂NaO [M+Na]⁺, found 237.0994. IR (KBr, cm⁻¹): v 1608, 1440, 1366, 1172.

General procedure for synthesis of pyrrole derivatives by reaction of isoxazoles with 1,3-dicarbonyl compounds.

Isoxazole (1.0 mmol) and 1,3-dicarbonyl compound (1.0-1.05 mmol) were dissolved in MeCN (5 mL) in a thick-wall tube (15 mL) with screw cap, $FeCl_2 \cdot 4H_2O$ (10% mol) and NiCl_2 \cdot 6H_2O (10% mol) was added, and the suspension obtained was stirred under conditions indicated in table 2-4 to completion of the reaction (monitoring by TLC). MeCN was removed on a rotary evaporator, the residue was dissolved in CH₂Cl₂ or CHCl₃ (3 mL) and filtered throw 10 cm layer of silica using light petroleum/ethyl acetate mixture as eluent. The solvents were evaporated, the residue was washed with hexane or hexane/ether mixture and dried to give usually analytically

pure compound. If needed pyrroles were then recrystallized from an appropriate solvent. If two products were formed in the reaction, they were separated by column chromatography on silica using light petroleum/ethyl acetate mixture as eluent.

Ethyl 4-acetyl-5-methyl-3-phenyl-1*H***-pyrrole-2-carboxylate** (**4a**). Ethyl 3-phenyl-2*H*-azirine-2-carboxylate **3a** (123 mg, 0.65 mmol) and pentane-2,4-dione **2a** (66 mg, 0.66 mmol) were dissolved in acetonitrile (5 mL) in a thick-wall screwcap 15 mL tube, and NiCl₂·6H₂O (8 mg, 0.03 mmol, 5% mol) was added, and the suspension obtained was stirred at room temperature for 24 hours. After the reaction completion (monitored by TLC), the reaction mixture was poured into water (50 mL). The resulting precipitate was filtered off and dried on air, then washed with hexane and dried once again. Colorless solid, 137 mg (77%), mp 126-128°C (hexane) (lit. mp 128 °C (aq. ethanol) [7]). R_f = 0.27 (light petroleum/ethyl acetate 5:2). ¹H NMR data for **4a** corresponds to published data [8]: ¹H NMR (CDCl₃) δ = 1.00 (t, J=7.2 Hz, 3H), 1.81 (s, 3H), 2.57 (s, 3H), 4.08 (q, J=7.2, 2H), 7.28-7-30 (m, 2H), 7.35-7.38 (m, 3H), 9.82 (br s, 1H). ¹³C NMR (CDCl₃): δ = 13.7 (CH₃), 14.4 (CH₃), 30.7 (CH₃), 60.3 (CH₂), 117.9 (C), 123.5 (C), 127.4 (CH), 127.7 (CH), 129.9 (CH), 132.5 (C), 135.5 (C), 138.6 (C), 161.5 (C), 196.7 (C). ESI/HRMS (m/z): 272.1281 calcd for C₁₆H₁₈NO₃ [M+H]⁺, found 272.1291; 294.1101 calcd for C₁₆H₁₇NaNO₃ [M+Na]⁺, found 294.1114. IR (KBr, cm⁻¹): v 3282, 1673, 1655.

Methyl 4-acetyl-5-methyl-3-phenyl-1*H***-pyrrole-2-carboxylate** (**4b**). Compound **4b** (120 mg, 82%) was obtained from 5-methoxy-3-phenylisoxazole **1a** (100 mg, 0.57 mmol), pentane-2,4-dione **2a** (58 mg, 0.58 mmol), FeCl₂·4H₂O (12 mg, 0.06 mmol, 10% mol) and NiCl₂·6H₂O (14 mg, 0.06 mmol, 10% mol) according to the general procedure under conditions indicated in table 2. Colorless solid, $R_f = 0.21$ (light petroleum/ethyl acetate 5:2), mp 149-151 °C (hexane) (lit. mp 150.5 °C (CCl₄) [9]). Both ¹H and ¹³C NMR spectra corresponds to published data [9, 10]. ¹H NMR (CDCl₃): $\delta = 1.80$ (s, 3H), 2.57 (s, 3H), 3.62 (s, 3H), 7.28-7.30 (m, 2H), 7.35-7.40 (m, 3H), 9.99 (br s, 1H). ¹³C NMR (CDCl₃): $\delta = 14.3$ (CH₃), 30.6 (CH₃), 51.4 (CH₃), 117.4 (C), 123.7 (C), 127.5 (CH), 127.8 (CH), 129.9 (CH), 132.6 (C), 135.2 (C), 138.8 (C), 161.7 (C), 196.7 (C). ESI/HRMS (m/z): 280.0944 calcd for C₁₅H₁₅NNaO₃ [M+Na]⁺, found 280.0933. IR (KBr, cm⁻¹): v 3300, 1671, 1655.

Methyl 5-methyl-3-phenyl-1*H*-pyrrole-2-carboxylate (5). Compound 5 (32 mg, 17%), along with compound **4b** (56%), was obtained from 5-methoxy-3-phenylisoxazole **1a** (150 mg, 0.86 mmol), pentane-2,4-dione **2a** (87 mg, 0.87 mmol), FeCl₂·4H₂O (36 mg, 0.18 mmol, 20% mol), according to the general procedure under conditions indicated in table 1. Colorless solid, $R_f = 0.37$ (light petroleum/ethyl acetate 5:2), mp 173-175 °C (hexane).¹H NMR (CDCl₃): $\delta = 2.33$ (s, 3H), 3.75 (s, 3H), 6.07 (d, J=2.9 Hz, 1H), 7.27-7.31 (m, 1H), 7.34-7.38 (m, 2H), 7.53-7.55 (m, 2H), 8.92 (br s, 1H). ¹³C NMR (CDCl₃): $\delta = 13.0$ (CH₃), 51.1 (CH₃), 111.2 (CH), 116.2 (C), 126.9 (CH), 127.7 (CH), 129.3(CH), 132.6 (C), 133.1 (C), 135.3 (C), 161.5 (C). ESI/HRMS (m/z): 238.0838 calcd for C₁₃H₁₃NNaO₂ [M+Na]⁺, found 238.0844. IR (KBr, cm⁻¹): v 3304, 1664.

tert-Butyl 4-acetyl-5-methyl-3-phenyl-1*H*-pyrrole-2-carboxylate (4c). Compound 4c (111 mg, 81%) was obtained from 5-*tert*-butoxy-3-phenylisoxazole **1b** (100 mg, 0.46 mmol), pentane-2,4-dione **2a** (47 mg, 0.47 mmol), FeCl₂·4H₂O (10 mg, 0.05 mmol, 10% mol), and NiCl₂·6H₂O (12 mg, 0.05 mmol, 10% mol), according to the general procedure under conditions indicated in table 2. Colorless solid, $R_f = 0.33$ (light petroleum/ethyl acetate 5:2), mp 185-186 °C (hexane). ¹H NMR (CDCl₃): $\delta = 1.22$ (s, 9H), 1.79 (s, 3H), 2.57 (s, 3H), 7.25-7.27 (m, 2H), 7.32-7.38 (m, 3H), 9.76 (br s, 1H). ¹³C NMR (CDCl₃): $\delta = 14.5$ (CH₃), 27.9 (CH₃), 30.7 (CH₃), 81.0 (C), 119.4 (C), 123.3 (C), 127.2 (CH), 127.7 (CH), 129.9 (CH), 131.6 (C), 136.2 (C), 138.1 (C), 161.0 (C), 196.7 (C). ESI/HRMS (m/z): 322.1414 calcd for C₁₈H₂₁NNaO₃ [M+Na]⁺, found 322.1412. IR (KBr, cm⁻¹): v 3287, 1661, 1651.

1-(2-Methyl-4-phenyl-5-(pyrrolidine-1-carbonyl)-1*H*-**pyrrol-3-yl)ethanone** (**4d**). Compound **4d** (99 mg, 71%) was obtained from 3-phenyl-5-(pyrrolidin-1-yl)isoxazole **1c** (100 mg, 0.47 mmol), pentane-2,4-dione **2a** (50 mg, 0.50 mmol), FeCl₂·4H₂O (10 mg, 0.05 mmol, 10% mol), and NiCl₂·6H₂O (12 mg, 0.05 mmol, 10% mol), according to the general procedure under conditions indicated in table 2. Colorless solid, $R_f = 0.35$ (dichloromethane/triethylamine 800:3), mp 182-183 °C (hexane/ether 10/1).¹H NMR (CDCl₃): δ = 1.51 (br s, 2H), 1.62 (br s, 2H), 1.92 (s, 3H), 2.45 (br s, 2H), 2.49 (s, 3H), 3.47 (br s, 2H), 7.29-7.40. (m, 5H), 10.60 (br s, 1H)¹³C NMR (CDCl₃): δ = 13.7 (CH₃), 24.0 (br s, CH₂), 25.8 (br s, CH₂), 30.7 (CH₃), 46.2 (br s, CH₂), 48.1 (br s, CH₂), 122.1 (C) 122.2 (C), 126.3 (C), 127.5 (CH), 128.5 (CH), 130.0 (CH), 135.8 (C), 136.3 (C), 163.2 (C), 197.4 (C). ESI/HRMS (m/z): 297.1598 calcd for C₁₈H₂₁N₂O₂ [M+H]⁺, found 297.1604; 319.1417 calcd for C₁₈H₂₀N₂NaO₃ [M+Na]⁺, found 319.1424. IR (KBr, cm⁻¹): v 3192, 1654, 1586.

Methyl 4-acetyl-3-(4-chlorophenyl)-5-methyl-1*H***-pyrrole-2-carboxylate (4e).** Compound **4e** (128 mg, 92%) was obtained from 3-(4-chlorophenyl)-5-methoxyisoxazole **1d** (100 mg, 0.48 mmol), pentane-2,4-dione **2a** (50 mg, 0.50 mmol), FeCl₂·4H₂O (10 mg, 0.05 mmol, 10% mol), and NiCl₂·6H₂O (12 mg, 0.05 mmol, 10% mol), according to the general procedure under conditions indicated in table 2. Colorless solid, $R_f = 0.21$ (light petroleum/ethyl acetate 5:2), mp 171-173 °C (hexane). ¹H NMR (CDCl₃): $\delta = 1.83$ (s, 3H), 2.56 (s, 3H), 3.65 (s, 3H), 7.24 (d, J=8.4 Hz, 2H), 7.37 (d, J=8.4 Hz, 2H), 9.73 (br s, 1H). ¹³C NMR (CDCl₃): $\delta = 14.4$ (CH₃), 30.8 (CH₃), 51.5 (CH₃), 117.6 (C), 123.7 (C), 128.1 (CH), 131.1 (C), 131.3 (CH), 133.6 (C), 133.7 (C), 138.7 (C), 161.4 (C), 196.2 (C). ESI/HRMS (m/z): 292.0735 calcd for C₁₅H₁₅ClNO₃ [M+H]⁺, found 292.0749; 314.0555 calcd for C₁₅H₁₄ClNNaO₃ [M+Na]⁺, found 314.0568. IR (KBr, cm⁻¹): v 3391, 1671, 1657.

Methyl 4-acetyl-3-(4-(dimethylamino)phenyl)-5-methyl-1*H*-pyrrole-2-carboxylate (4f). Compound 4f (32 mg, 23%) was obtained from 3-(4-(dimethylamino)phenyl)-5methoxyisoxazole 1e (100 mg, 0.46 mmol), ethyl pentane-2,4-dione 2a (50 mg, 0.50 mmol), FeCl₂·4H₂O (10 mg, 0.05 mmol, 10% mol), and NiCl₂·6H₂O (12 mg, 0.05 mmol, 10% mol), according to the general procedure under conditions indicated in table 2. Colorless solid, R_f = 0.21 (light petroleum/ethyl acetate 2:1), mp 184-186 °C (hexane/ether 10/1). ¹H NMR (CDCl₃): δ = 1.87 (s, 3H), 2.54 (s, 3H), 3.00 (s, 6H), 3.68 (s, 3H), 6.75 (d, J=8.8 Hz, 2H), 7.15 (d, J=8.8 Hz, 2H), 9.20 (br s, 1H). ¹³C NMR (CDCl₃): δ = 14.4 (CH₃), 30.6 (CH₃), 40.5 (CH₃), 51.4 (CH₃), 111.7 (CH), 117.1 (C), 122.2 (C), 124.1 (C), 130.7 (CH), 133.4 (C), 137.8 (C), 149.9 (C), 161.4 (C), 197.4. ESI/HRMS (m/z): 301.1547 calcd for C₁₇H₂₁N₂O₃ [M+H]⁺, found 301.1551; 323.1367 calcd for C₁₇H₂₀N₂NaO₃ [M+Na]⁺; found 323.1371. IR (KBr, cm⁻¹): v 3303, 3213, 1691, 1674.

Methyl 4-benzoyl-3,5-diphenyl-1*H*-pyrrole-2-carboxylate (4g). Compound 4g (196 mg, 90%) was obtained from 5-methoxy-3-phenylisoxazole 1a (100 mg, 0.57 mmol), ethyl 1,3-diphenylpropan-1,3-dione 2b (128 mg, 0.57 mmol), FeCl₂·4H₂O (12 mg, 0.06 mmol, 10% mol), and NiCl₂·6H₂O (14 mg, 0.06 mmol, 10% mol), according to the general procedure under conditions indicated in table 2. Colorless solid, $R_f = 0.33$ (light petroleum/ethyl acetate 5:2), mp 173-174 °C (hexane/ether 10/1) (lit. mp 168-169 °C (EtOH) [11]). Both ¹H and ¹³C NMR spectra corresponds to published data [11]. ¹H NMR (CDCl₃): δ =3.74 (s, 3H), 7.13-7.20 (m, 5H), 7.29-7.31 (m, 6H), 7.44-7.46 (m, 2H), 7.65 (m, 2H), 9.49-9.52 (br s, 1H). ¹³C NMR (CDCl₃): δ =51.6 (CH₃), 118.6 (C), 123.3 (C), 127.2 (CH), 127.4 (CH), 127.9 (CH), 128.8 (CH), 129.7 (CH), 130.3 (CH), 130.4 (C), 132.5 (CH), 132.9 (C), 133.0 (C), 136.6 (C), 138.1 (C), 161.4 (C), 193.8 (C). ESI/HRMS (m/z): 382.1438 calcd for C₂₅H₂₀NO₃ [M+H]⁺, found 382.1444; 404.1258 calcd for C₂₅H₁₉NNaO₃ [M+Na]⁺, found 404.1274. IR (KBr, cm⁻¹): v 3273, 1687, 1644.

Methyl 4-benzoyl-3-(4-bromophenyl)-5-phenyl-1*H***-pyrrole-2-carboxylate (4h). Compound 4h (147 mg, 64%) was obtained from 3-(4-bromophenyl)-5-methoxyisoxazole 1f (127 mg, 0.50 mmol), ethyl 1,3-diphenylpropan-1,3-dione 2b (112 mg, 0.50 mmol), FeCl₂·4H₂O (10 mg, 0.05 mmol, 10% mol), and NiCl₂·6H₂O (12 mg, 0.05 mmol, 10% mol)), according to the general procedure under conditions indicated in table 2. Colorless solid, R_f = 0.42 (light petroleum/ethyl acetate 5:2), mp 237-240 °C (hexane/ether 1/1). ¹H NMR (DMSO-d₆): δ = 3.68 (s, 3H), 7.14-7.16 (m, 2H), 7-21-7.29 (m, 5H), 7.37-7.40 (m, 5H), 7.53-7.55 (m, 2H), 12.63 (br s, 1H). ¹³C NMR (DMSO-d₆): δ = 51.2 (CH₃), 118.9 (C), 120.2 (C), 122.4 (C), 128.1 (CH), 128.16 (C), 128.22 (C), 128.5 (CH), 129.2 (CH), 130.07 (CH), 130.14 (C), 130.4 (C), 132.2 (CH), 132.8 (CH), 132.9 (C), 136.7 (C), 137.8 (C), 160.4 (C), 193.3 (C). ESI/HRMS (m/z): 460.0498 calcd for C₂₅H₁₉BrNO₃ [M+H]⁺, found 460.0553; 482.0363 calcd for C₂₅H₁₈BrNNaO₃ [M+Na]⁺, found 482.0372. IR (KBr, cm⁻¹): v 3287, 1681, 1644.**

Methyl 4-benzoyl-3-(4-methoxyphenyl)-5-phenyl-1*H***-pyrrole-2-carboxylate (4i).** Compound **4i** (144 mg, 72%) was obtained from 5-methoxy-3-(4-methoxyphenyl)isoxazole **1g** (100 mg, 0.49 mmol), ethyl 1,3-diphenylpropan-1,3-dione **2b** (112 mg, 0.50 mmol), FeCl₂·4H₂O (10 mg, 0.05 mmol, 10% mol), and NiCl₂·6H₂O (12 mg, 0.05 mmol, 10% mol), according to the general procedure under conditions indicated in table 2. Colorless solid, $R_f = 0.22$ (light petroleum/ethyl acetate 5:2). Colorless solid, mp 211-212 °C (hexane/ether 1/1). ¹H NMR (DMSO-d₆): δ = 3.67 (s, 3H), 3.68 (s, 3H), 6.73-6.76 (m, 2H), 7.11-7.15 (m, 2H), 7.22-7.30 (m, 5H), 7.36-7.42 (m, 3H), 7.54-7.56 (m, 2H), 12.46 (s, 1H). ¹³C NMR (DMSO-d₆): δ = 51.0 (CH₃), 54.9 (CH₃), 112.6 (CH), 118.6 (C), 122.6 (C), 125.6 (C), 128.08 (CH), 128.12 (CH), 128.15 (CH), 128.4 (CH), 129.1 (CH), 130.3 (C), 131.2 (CH), 131.4 (C), 132.7 (CH), 136.0 (C), 137.9 (C), 158.1 (C), 160.6 (C), 193.8 (C). ESI/HRMS (m/z): 412.1544 calcd for C₂₆H₂₂NO₄ [M+H]⁺, found 412.1564; 434.1363 calcd for C₂₆H₂₂NNaO₃ [M+Na]⁺, found 434.1378. IR (KBr, cm⁻¹): v 3296, 1679, 1649.

Methyl 4-acetyl-3,5-dimethyl-1*H*-pyrrole-2-carboxylate (4k). Compound 4k (149 mg, 87%) was obtained from 5-methoxy-3-methylisoxazole 1h (100 mg, 0.89 mmol), pentane-2,4-dione 2a (90 mg, 0.90 mmol), FeCl₂·4H₂O (18 mg, 0.09 mmol, 10% mol), and NiCl₂·6H₂O (21 mg, 0.09 mmol, 10% mol), according to the general procedure under conditions indicated in table 2. Colorless solid, $R_f = 0.20$ (light petroleum/ethyl acetate 5:2), mp 163-165 °C (hexane) (lit. mp 160 °C (MeOH) [12]). ¹H NMR (CDCl₃): $\delta = 2.45$ (s, 3H), 2.52 (s, 3H), 2.58 (s, 3H), 3.86 (s, 3H), 9.09 (br s, 1H). ¹³C NMR (CDCl₃): $\delta = 12.7$ (CH₃), 15.2 (CH₃), 31.3 (CH₃), 51.4 (CH₃), 117.7 (C), 123.6 (C), 129.5 (C), 138.2 (C), 161.9 (C), 195.5 (C). ESI/HRMS (m/z): 218.0788 calcd for C₁₀H₁₃NNaO₃ [M+Na]⁺, found 218.0788. IR (KBr, cm⁻¹): v 3308, 1682, 1651.

Methyl 6,6-dimethyl-4-oxo-3-phenyl-4,5,6,7-tetrahydro-1*H*-indole-2-carboxylate (7a). Compound 7a (220 mg, 86%) was obtained from 5-methoxy-3-phenylisoxazole 1a (150 mg, 0.86 mmol), 5,5-dimethylcyclohexane-1,3-dione 6 (120 mg, 0.86 mmol), FeCl₂·4H₂O (18 mg, 0.09 mmol, 10% mol), and NiCl₂·6H₂O (21 mg, 0.09 mmol, 10% mol), according to the general procedure under conditions indicated in table 3. Colorless solid, R_f = 0.18 (light petroleum/ethyl acetate 5:2), mp. > 220 °C (dec.) (hexane/ether 5/1). ¹H NMR (CDCl₃): δ = 1.14 (s, 6H), 2.36 (s, 2H), 2.73 (s, 2H), 3.69 (s, 3H), 7.30-7.37 (m, 3H), 7.40-7.42 (m, 2H), 9.30 (br s, 1H). ¹³C NMR (CDCl₃): δ = 28.4 (CH₃), 35.1 (C), 37.0 (CH₂), 51.5 (CH₃), 53.1 (CH₂), 118.5 (C), 119.4 (C), 127.0 (CH), 127.4 (CH), 130.3 (CH), 130.7 (C), 132.6 (C), 144.4 (C), 161.7 (C), 193.0 (C). ESI/HRMS (m/z): 298.1438 calcd for C₁₈H₂₀NO₃ [M+H]⁺, found 298.1432; 320.1257 calcd for C₁₈H₁₉NNaO₃ [M+Na]⁺; found 320.1260. IR (KBr, cm⁻¹): v 3152, 2959, 1697, 1641.

Methyl 3-(4-chlorophenyl)-6,6-dimethyl-4-oxo-4,5,6,7-tetrahydro-1*H*-indole-2-carboxylate (7b). Compound 7b (112 mg, 70%) was obtained from 3-(4-chlorophenyl)-5-methoxyisoxazole 1d (100 mg, 0.48 mmol), 5,5-dimethylcyclohexane-1,3-dione 6 (70 mg, 0.50 mmol),

FeCl₂·4H₂O (10 mg, 0.05 mmol, 10% mol), and NiCl₂·6H₂O (12 mg, 0.05 mmol, 10% mol), according to the general procedure under conditions indicated in table 3. Colorless solid, $R_f = 0.16$ (light petroleum/ethyl acetate 5:2), mp 252-254 °C (dec.) (hexane/ether 5/1). ¹H NMR (CDCl₃): $\delta = 1.14$ (s, 6H), 2.36 (s, 2H), 2.72 (s, 2H), 3.71 (s, 3H), 7.31 (d, J=8.5 Hz, 2H), 7.35 (d, J=8.5 Hz, 2H), 9.33 (br s, 1H). ¹³C NMR (CDCl₃): $\delta = 28.4$ (CH₃), 35.2 (C), 37.0 (CH₂), 51.6 (CH₃), 53.1 (CH₂), 118.5 (C), 119.5 (C), 127.3 (CH), 129.3 (C), 131.0 (C), 131.8 (CH), 133.4 (C), 144.4 (C), 161.4 (C), 193.0 (C). ESI/HRMS (m/z): 332.1048 calcd for C₁₈H₁₉ClNO₃ [M+H]⁺, found 332.1061; 354.0868 calcd for C₁₈H₁₈ClNNaO₃ [M+Na]⁺; found 354.0880. IR (KBr, cm⁻¹): v 3155, 1696, 1640.

Methyl 3-(4-bromophenyl)-6,6-dimethyl-4-oxo-4,5,6,7-tetrahydro-1*H***-indole-2-carboxylate (7c**). Compound **7c** (131 mg, 70%) was obtained from 3-(4-bromophenyl)-5-methoxyisoxazole **1f** (127 mg, 0.50 mmol), 5,5-dimethylcyclohexane-1,3-dione **6** (70 mg, 0.50 mmol), FeCl₂·4H₂O (10 mg, 0.05 mmol, 10% mol), and NiCl₂·6H₂O (12 mg, 0.05 mmol, 10% mol), according to the general procedure under conditions indicated in table 3. Colorless solid, $R_f = 0.18$ (light petroleum/ethyl acetate 5:2), mp 245-247 °C (dec.) (hexane/ether 5/1).¹H NMR (CDCl₃): $\delta = 1.13$ (s, 6H), 2.36 (s, 2H), 2.72 (s, 2H), 3.70 (s, 3H), 7.29 (d, J=8.4 Hz, 2H), 7.46 (d, J=8.4 Hz, 2H), 9.38 (br s, 1H). ¹³C NMR (CDCl₃): $\delta = 28.4$ (CH₃), 35.2 (C), 37.0 (CH₂), 51.6 (CH₃), 53.1 (CH₂), 118.4 (C), 119.4 (C), 121.7 (C), 129.3 (C), 130.2 (CH), 131.5 (C), 132.1 (CH), 144.4 (C), 161.4 (C), 193.0 (C). ESI/HRMS (m/z): 398.0363 calcd for C₁₈H₁₈BrNO₃ [M+Na]⁺; found 398.0377. IR (KBr, cm⁻¹): v 3153, 2958, 1699, 1637.

Methyl 6,6-dimethyl-3-(4-methoxyphenyl)-4-oxo-4,5,6,7-tetrahydro-1*H*-indole-2carboxylate (7d). Compound 7d (120 mg, 76%) was obtained from 5-methoxy-3-(4methoxyphenyl)isoxazole 1g (100 mg, 0.49 mmol), 5,5-dimethylcyclohexane-1,3-dione 6 (70 mg, 0.50 mmol), FeCl₂·4H₂O (10 mg, 0.05 mmol, 10% mol), and NiCl₂·6H₂O (12 mg, 0.05 mmol, 10% mol), according to the general procedure under conditions indicated in table 3. Colorless solid, $R_f = 0.15$ (light petroleum/ethyl acetate 5:2), mp 204-206 °C (hexane/ether 5/1). ¹H NMR (CDCl₃): δ = 1.13 (s, 6H), 2.36 (s, 2H), 2.71 (s, 2H), 3.71 (s, 3H), 3.83 (s, 3H), 6.89 (d, J=8.9 Hz, 2H), 7.37 (d, J=8.9 Hz, 2H), 9.42 (br s, 1H). ¹³C NMR (CDCl₃): δ = 28.4 (CH₃), 35.0 (C), 37.0 (CH₂), 51.4 (CH₃), 53.2 (CH₂), 55.1 (CH₂), 112.5 (CH), 118.3 (C), 119.1 (C), 124.7 (C), 130.7 (C), 131.7 (CH), 144.7 (C), 158.9 (C), 167.8 (C), 193.2 (C).ESI/HRMS (m/z): 328.1544 calcd for C₁₉H₂₂NO₄ [M+H]⁺, found 328.1555; 350.1363 calcd for C₁₉H₂₁NNaO₄ [M+Na]⁺; found 350.1376. IR (KBr, cm⁻¹): v 3192, 2962, 1680, 1652.

Methyl 3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydro-1*H*-indole-2-carboxylate (7e). Compound 7e (37 mg, 18%) was obtained from 5-methoxy-3-methylisoxazole 1h (100 mg, 0.89mmol), 5,5-dimethylcyclohexane-1,3-dione 6 (126 mg, 0.90mmol), FeCl₂·4H₂O (18 mg, 0.09 mmol, 10% mol), and NiCl₂·6H₂O (21 mg, 0.09 mmol, 10% mol), according to the general procedure under conditions indicated in table 3. Colorless solid, $R_f = 0.22$ (light petroleum/ethyl acetate 5:2), mp > 185°C (dec.) (hexane/ether 5/1).¹H NMR (CDCl₃): $\delta = 1.10$ (s, 6H), 2.35 (s, 2H), 2.60 (s, 3H), 2.65 (s, 2H), 3.87 (s, 3H), 8.87 (br s, 1H). ¹³C NMR (CDCl₃): $\delta = 11.4$ (CH₃), 28.4 (CH₃), 35.2 (C), 36.9 (CH₂), 51.5 (CH₃), 52.9 (CH₂), 119.3 (C), 119.7 (C), 128.5 (C), 144.4 (C), 162.4 (C), 194.8 (C). ESI/HRMS (m/z): 258.1101 calcd for C₁₃H₁₇NNaO₃ [M+Na]⁺, found 258.1089. IR (KBr, cm⁻¹): v 3253, 2957, 1699, 1683, 1636.

4-Ethyl 2-methyl 3,5-diphenyl-1*H***-pyrrole-2,4-dicarboxylate (9a) and methyl 4-benzoyl-5-ethoxy-3phenyl-1***H***-pyrrole-2-carboxylate (10a).** Compound **9a** (103 mg, 52%) and compound **10a** (24 mg, 12%) were obtained from 5-methoxy-3-phenylisoxazole **1a** (100 mg, 0.57 mmol), ethyl 3-oxo-3-phenylpropanoate **8a** (120 mg, 0.62 mmol), FeCl₂·4H₂O (12 mg, 0.06 mmol, 10% mol), and NiCl₂·6H₂O (14 mg, 0.06 mmol, 10% mol), according to the general procedure under conditions indicated in table 4.

Compound **9a**, colorless solid, $R_f = 0.39$ (light petroleum/ethyl acetate 5:2), mp 175-176 °C (hexane) (lit. mp 161-162 °C (ethyl acetate) [11]). Both ¹H and ¹³C NMR spectra corresponds to published data [11]. ¹H NMR (CDCl₃): $\delta = 0.86$ (t, J=7.2 Hz, 3H), 3.65 (s, 3H), 3.96 (q, J=7.2 Hz, 2H), 7.35-7.37 (m, 5H), 7.43-7.45 (m, 3H), 7.59-7.62 (m, 2H), 9.37 (br s, 1H). ¹³C NMR (CDCl₃): $\delta = 13.5$ (CH₃), 51.5 (CH₃), 60.0 CH₂), 115.0 (C), 119.2 (C), 127.1 (CH), 127.2 (CH), 128.4 (CH), 128.9 (CH), 129.1 (CH), 129.9 (CH), 131.1 (C), 133.5 (C), 134.2 (C), 138.9 (C), 161.3 (C), 164.5 (C). ESI/HRMS (m/z): 350.1387 calcd for C₂₁H₂₀NO₄ [M+H]⁺, found 350.1395; 372.1207 calcd for C₂₁H₁₉NNaO₄ [M+Na]⁺, found 372.1221. IR (KBr, cm⁻¹): v 3294, 1717, 1675.

Compound **10a**, colorless solid, $R_f = 0.18$ (light petroleum/ethyl acetate 5:2), mp 186-187 °C (hexane).¹H NMR (CDCl₃): $\delta = 1.24$ (t, J=7.0 Hz, 3H), 3.68 (s, 3H), 4.14 (q, J=7.0 Hz, 2H), 7.12-7.15 (m, 3H), 7.21-7.24 (m, 4H), 7.33-7.36 (m, 1H), 7.63-7.65 (m, 2H), 9.10 (br s, 1H). ¹³C NMR (CDCl₃): $\delta = 14.7$ (CH₃), 51.4 (CH₃), 69.4 (CH₂), 109.0 (C), 110.6 (C), 127.1 (CH), 127.2 (CH), 127.7 (CH), 129.4 (CH), 130.3 (CH), 131.9 (CH), 132.8 (C), 133.2 (C), 138.9 (C), 149.9 (C), 161.3 (C), 191.3 (C). ESI/HRMS (m/z): 350.1387 calcd for C₂₁H₂₀NO₄ [M+H]⁺, found 350.1396; 372.1207 calcd for C₂₁H₁₉NNaO₄ [M+Na]⁺, found 372.1216. IR (KBr, cm⁻¹): v 3264, 1663, 1638.

4-Ethyl 2-methyl 3-(4-chlorophenyl)-2-methyl-5-phenyl-1*H*-pyrrole-2,4-dicarboxylate (9b) and methyl 4-benzoyl-3-(4-chlorophenyl)-5-ethoxy-1*H*-pyrrole-2-carboxylate (10b). Compound 9b (86 mg, 47%) and compound 10b (31 mg, 17%) were obtained from 3-(4-chlorophenyl)-5-methoxyisoxazole 1d (100 mg, 0.48 mmol) and 3-oxo-3-phenylpropanoate 8a (96 mg, 0.50 mmol), FeCl₂·4H₂O (10 mg, 0.05 mmol, 10% mol), and NiCl₂·6H₂O (12 mg, 0.05 mmol, 10% mol), according to the general procedure under conditions indicated in table 4.

Compound **9b**, colorless solid, $R_f = 0.39$ (light petroleum/ethyl acetate 5:2), mp 188-190 °C (hexane). ¹H NMR (CDCl₃): δ = 0.90 (t, J=7.2 Hz, 3H), 3.66-3.67 (m, 3H), 3.88 (q, J=7.2 Hz, 2H), 7.29-7.31 (m, 2H), 7.34-7.36 (m, 2H), 7.41-7.48 (m, 3H), 7.56-7.60 (m, 2H), 9.37 (br s, 1H). ¹³C NMR (CDCl₃): δ = 13.5 (CH₃), 51.6 (CH₃), 60.1 (CH₂), 114.7 (C), 119.3 (C), 127.4 (CH), 128.4 (CH), 128.9 (CH), 129.2 (CH), 131.0 (C), 131.4 (CH), 132.2 (C), 132.7 (C), 133.2 (C), 139.2 (C), 161.1 (C), 164.2 (C). ESI/HRMS (m/z): 384.0998 calcd for C₂₁H₁₉ClNO₄ [M+H]⁺, found 384.0963; 406.0817 calcd for C₂₁H₁₈ClNNaO₄ [M+Na]⁺; found 406.0826. IR (KBr, cm⁻¹): v 3293, 1715, 1673.

Compound **10b**, colorless solid, $R_f = 0.16$ (light petroleum/ethyl acetate 5:2), mp 175-177 °C (hexane).¹H NMR (CDCl₃): δ = 1.23 (t, J=7.0 Hz, 3H), 3.70 (s, 3H), 4.11 (q, J=7.0 Hz, 2H), 7.12-7.18 (m, 4H), 7.25-7.28 (m, 2H), 7.38-7.42 (m, 1H), 7.63-7.65 (m, 2H), 8.91 (br s, 1H). ¹³C NMR (CDCl₃): δ = 14.7 (CH₃), 51.5 (CH₃), 69.5 (CH₂), 108.8 (C), 110.8 (C), 127.5 (CH), 127.8 (H), 129.4 (CH), 131.5 (C), 131.6 (CH), 131.8 (C), 132.2 (CH), 133.2 (C), 138.8 (C), 149.8 (C), 161.0 (C), 191.0 (C). ESI/HRMS (m/z): 384.0998 calcd for C₂₁H₁₉ClNO₄ [M+H]⁺, found 384.1012; 406.0817 calcd for C₂₁H₁₈ClNNaO₄ [M+Na]⁺; found 406.0832. IR (KBr, cm⁻¹): v 3282, 1666, 1642.

4-Ethyl 2-methyl 3-(4-methoxyphenyl)-5-phenyl-1*H*-pyrrole-2,4-dicarboxylate (9c) and methyl 4-benzoyl-5-ethoxy-3-(4-methoxyphenyl)-1*H*-pyrrole-2-carboxylate (10c). Compound 9c (30 mg, 33%) and compound 10c (10 mg, 11%) were obtained from 5-methoxy-3-(4-methoxyphenyl)isoxazole 1g (50 mg, 0.24 mmol), ethyl 3-oxo-3-phenylpropanoate 8a (50 mg, 0.26 mmol), FeCl₂·4H₂O (6 mg, 0.03 mmol, 10% mol), and NiCl₂·6H₂O (7 mg, 0.03mmol, 10% mol), according to the general procedure under conditions indicated in table 4. Compound **9c**, colorless solid, $R_f = 0.27$ (light petroleum/ethyl acetate 5:2), mp 174-175 °C (hexane). ¹H NMR (CDCl₃): $\delta = 0.91$ (t, J=7.1 Hz, 3H), 3.69 (s, 3H), 3.85 (s, 3H), 3.99 (q, J=7.1 Hz, 2H), 6.92 (d, J=8.7 Hz, 2H), 7.30 (d, J=8.7 Hz, 2H), 7.42-7.46 (m, 3H), 7.57-7.59 (m, 2H), 9.28 (br s, 1H). ¹³C NMR (CDCl₃): $\delta = 13.6$ (CH₃), 51.6 (CH₃), 55.2 (CH₃), 60.0 (CH₂), 112.7 (CH), 115.0 (C), 119.1 (C), 126.2 (C), 128.4 (CH), 128.8 (CH), 129.0 (CH), 131.1 (CH), 131.2 (C), 133.4 (C), 138.7 (C), 158.9 (C), 161.2 (C), 164.6 (C). ESI/HRMS (m/z): 402.1312 calcd for C₂₂H₂₁NNaO₅ [M+Na]⁺, found 402.1293. IR (KBr, cm⁻¹): v 3288, 1716, 1676.

Compound **10c**, colorless solid, $R_f = 0.12$ (light petroleum/ethyl acetate 5:2), mp 158-159 °C (hexane). ¹H NMR (CDCl₃): $\delta = 1.24$ (t, J=7.0 Hz, 3H), 3.70 (s, 3H), 3.73 (s, 3H), 4.12 (q, J=7.0 Hz, 2H), 6.70 (d, J=8.7 Hz, 2H), 7.16 (d, J=8.7 Hz, 2H), 7.22-7.26 (m, 2H), 7.34-7.38 (m, 1H), 7.63-7.65 (m, 2H), 8.95 (br s, 1H). ¹³C NMR (CDCl₃): $\delta = 14.8$ (CH₃), 51.4 (CH₃), 55.1 (CH₃), 69.3 (CH₂), 108.9 (C), 110.4 (C), 112.8 (CH), 125.5 (C), 127.7 (CH), 129.5 (CH), 131.5 (CH), 132.0 (CH), 132.7 (C), 138.9 (C), 149.8 (C), 158.7 (C), 161.3 (C), 191.4 (C). ESI/HRMS (m/z): 380.1492 calcd for C₂₂H₂₂NO₅ [M+H]⁺, found 380.1476. IR (KBr, cm⁻¹): v 3230, 1714, 1632.

2-*tert*-**Butyl 4**-ethyl **5**-methyl-**3**-phenyl-**1***H*-pyrrole-**2**,**4**-dicarboxylate (9d). Compound **9d** (51 mg, 34%) was obtained from 5-*tert*-butoxy-3-phenylisoxazole **1b** (100 mg, 0.46 mmol), ethyl 3-oxobutanoate **8b** (61 mg, 0.47 mmol), FeCl₂·4H₂O (10 mg, 0.05 mmol, 10% mol), and NiCl₂·6H₂O (12 mg, 0.05 mmol, 10% mol), according to the general procedure under conditions indicated in table 4. Colorless solid, $R_f = 0.44$ (light petroleum/ethyl acetate 5:2), mp 152-154 °C (hexane). ¹H NMR (CDCl₃): $\delta = 0.96$ (t, J=7.0 Hz, 3H), 1.23 (s, 9H), 2.58 (s, 3H), 4.02 (q, J=7.0 Hz, 2H), 7.21-7.23 (m, 2H), 7.27-7.32 (m, 3H), 9.66 (br s, 1H). ¹³C NMR (CDCl₃): $\delta = 13.7$ (CH₃), 13.9 (CH₃), 27.9 (CH₃), 59.3 (CH₂), 81.0 (C), 113.6 (C), 119.6 (C), 126.4 (CH), 126.8 (CH), 129.8 (CH), 132.7 (C), 135.9 (C), 138.2 (C), 161.1 (C), 164.9 (C). ESI/HRMS (m/z): 352.1519 calcd for C₁₉H₂₄NNaO₄ [M+Na]⁺, found 352.1533. IR (KBr, cm⁻¹): v 3284, 1694, 1662.

4-Ethyl 2-methyl 5-methyl-3-phenyl-1*H***-pyrrole-2,4-dicarboxylate (9e).** Compound 9e (143 mg, 58%) was obtained from 5-methoxy-3-phenylisoxazole 1a (150 mg, 0.86 mmol) and ethyl 3-oxobutanoate **8b** (112 mg, 0.86 mmol), FeCl₂·4H₂O (18 mg, 0.09 mmol, 10% mol), and NiCl₂·6H₂O (21 mg, 0.09 mmol, 10% mol), according to the general procedure under conditions indicated in table 4. Colorless solid, $R_f = 0.39$ (light petroleum/ethyl acetate 5:2), mp 141-143 °C (hexane) (lit. mp 140 (CCl₄) [9]). Both ¹H and ¹³C NMR spectra are in accordance to literature [9, 10]. ¹H NMR (CDCl₃): δ =0.98 (t, J=7.2 Hz, 3H), 2.59 (s, 3H), 3.64 (s, 3H), 4.03 (q, J=7.2 Hz, 2H), 7.25-7.28 (m, 2H), 7.30-7.33 (m, 3H), 9.48 (br s, 1H). ¹³C NMR (CDCl₃): δ = 13.7 (CH₃), 13.9 (CH₃), 51.4 (CH₃), 59.4 (CH₂), 114.0 (C), 117.7 (C), 126.8 (CH), 126.9 (CH), 129.8 (CH), 133.5 (C), 134.8 (C), 138.7 (C), 161.5 (C), 164.8 (C). ESI/HRMS (m/z): 310.1050 calcd for C₁₆H₁₇NNaO₄ [M+Na]⁺, found 310.1062. IR (KBr, cm⁻¹): v 3308, 1700, 1670.

4-Ethyl 2-methyl 3-(4-chlorophenyl)-5-methyl-1*H*-pyrrole-2,4-dicarboxylate (9f) and methyl 4-acetyl-3-(4-chlorophenyl)-5-ethoxy-1*H*-pyrrole-2-carboxylate (10d). Compound 9f (62 mg, 40%) and compound 10d (13 mg, 4%) were obtained from 3-(4-clorophenyl)-5-methoxyisoxazole 1d (100 mg, 0.48 mmol) and ethyl 3-oxobutanoate 8b (65 mg, 0.50 mmol), FeCl₂·4H₂O (10 mg, 0.05 mmol, 10% mol), and NiCl₂·6H₂O (12 mg, 0.05 mmol, 10% mol), according to the general procedure under conditions indicated in table 4.

Compound **9f**, colorless solid, $R_f = 0.39$ (light petroleum/ethyl acetate 5:2), mp 150-153 °C (hexane). ¹H NMR (CDCl₃): $\delta = 1.04$ (t, J=7.1 Hz, 3H), 2.58 (s, 3H), 3.65 (s, 3H), 4.06 (q, J=7.1 Hz, 2H), 7.19-7.22 (m, 2H), 7.30-7.32 (m, 2H), 9.64 (br s, 1H). ¹³C NMR (CDCl₃): $\delta = 13.8$ (CH₃), 13.9 (CH₃), 51.5 (CH₃), 59.6 (CH₂), 113.9 (C), 117.8 (C), 127.2 (CH), 131.3 (CH), 132.2 (C), 132.8 (C), 133.3 (C), 139.0 (C), 161.5 (C), 164.6 (C). ESI/HRMS (m/z): 322.0841 calcd for

 $C_{16}H_{17}CINO_4$ [M+H]⁺, found 322.0851; 344.0661 calcd for $C_{16}H_{16}CINNaO_4$ [M+Na]⁺; found 344.0671. IR (KBr, cm⁻¹): v 3282, 1701, 1671.

Compound **10d**, colorless solid, $R_f = 0.16$ (light petroleum/ethyl acetate 5:2), mp 160-162 °C (hexane). ¹H NMR (CDCl₃): $\delta = 1.52$ (t, J=7.0 Hz, 3H), 2.21 (s, 3H), 3.62 (s, 3H), 4.32 (q, J=7.0 Hz, 2H), 7.20 (d, J=8.4 Hz, 2H), 7.32 (d, J=8.4 Hz, 2H), 8.96 (br s, 1H). ¹³C NMR (CDCl₃): $\delta = 14.8$ (CH₃), 30.6 (CH₃), 51.5 (CH₃), 68.0 (CH₂), 109.2 (C), 111.6 (C), 127.6 (CH), 131.15 (C), 131.18 (CH), 132.8 (C), 133.2 (C), 151.1 (C), 161.3 (C), 192.7 (C).ESI/HRMS (m/z): 322.0841 calcd for C₁₆H₁₇ClNO₄ [M+H]⁺, found 322.0850; 344.0661 calcd for C₁₆H₁₆ClNNaO₄ [M+Na]⁺; found 344.0675. IR (KBr, cm⁻¹): v 3072, 2978, 2955, 1720, 1628.

4-Ethyl 2-methyl 3-(4-bromophenyl)-5-methyl-1*H*-pyrrole-2,4-dicarboxylate (9g), methyl 4-acetyl-3-(4-bromophenyl)-5-ethoxy-1*H*-pyrrole-2-carboxylate (10e). Compound 9g (75 mg, 41%) and compound 10e (21 mg, 11%) were obtained from 3-(4-bromophenyl)-5-methoxyisoxazole 1f (127 mg, 0.50mmol), ethyl 3-oxobutanoate 8b (65 mg, 0.50 mmol), FeCl₂·4H₂O (10 mg, 0.05 mmol, 10% mol), and NiCl₂·6H₂O (12 mg, 0.05 mmol, 10% mol), according to the general procedure under conditions indicated in table 4.

Compound **9g**, colorless solid, $R_f = 0.35$ (light petroleum/ethyl acetate 5:2), mp 145-147 °C (hexane).¹H NMR (CDCl₃): δ = 1.04 (t, J=7.2 Hz, 3H), 2.58 (s, 3H), 3.66 (s, 3H), 4.06 (q, J=7.2 Hz, 2H), 7.15 (d, J=8.4 Hz, 2H), 7.46 (d, J=8.4 Hz, 2H), 9.29 (br s, 1H). ¹³C NMR (CDCl₃): δ = 13.8 (CH₃), 14.0 (CH₃), 51.5 (CH₃), 59.6 (CH₂), 113.8 (C), 117.8 (C), 121.1 (C), 130.1 (CH), 131.7 (CH), 132.1 (C), 133.8 (C), 138.9 (C), 161.3 (C), 164.5 (C). ESI/HRMS (m/z): 366.0336 calcd for C₁₆H₁₇BrNO₄ [M+H]⁺, found 366.0345; 388.0155 calcd for C₁₆H₁₆BrNNaO₄ [M+Na]⁺; found 388.0164. IR (KBr, cm⁻¹): v 3296, 1698, 1670.

Compound **10e**, colorless solid, $R_f = 0.15$ (light petroleum/ethyl acetate 5:2), mp 163-165 °C (hexane). ¹H NMR (CDCl₃): $\delta = 1.53$ (t, J=7.0 Hz, 3H), 2.21 (s, 3H), 3.63 (s, 3H), 4.32 (q, J=7.0 Hz, 2H), 7.15 (d, J=8.6 Hz, 2H), 7.47 (d, J=8.6 Hz, 2H), 8.90 (br s, 1H). ¹³C NMR (CDCl₃): $\delta = 14.8$ (CH₃), 30.6 (CH₃), 51.5 (CH₃), 68.0 (CH₂), 109.2 (C), 111.5 (C), 121.5 (C), 130.5 (CH), 131.1 (C), 131.5 (CH), 133.3 (C), 151.0 (C), 161.3 (C), 192.6 (C). ESI/HRMS (m/z): 366.0336 calcd for C₁₆H₁₇BrNO₄ [M+H]⁺, found 366.0348; 388.0155 calcd for C₁₆H₁₆BrNNaO₄ [M+Na]⁺; found 388.0170. IR (KBr, cm⁻¹): v 3159, 3071, 2976, 1721, 1626.

4-Ethyl 2-methyl 3-(4-(dimethylamino)phenyl)-5-methyl-1*H*-**pyrrole-2,4-dicarboxylate (9h).** Compound **9h** (54 mg, 36%) was obtained from 3-(4-(dimethylamino)phenyl)-5methoxyisoxazole **1e** (100 mg, 0.46mmol), ethyl 3-oxobutanoate **8b** (65 mg, 0.50 mmol), FeCl₂·4H₂O (10 mg, 0.05 mmol, 10% mol), and NiCl₂·6H₂O (12 mg, 0.05 mmol, 10% mol), according to the general procedure under conditions indicated in table 4. Colorless solid, R_f = 0.18 (light petroleum/ethyl acetate 2:1), mp 155-156 °C (hexane). ¹H NMR (CDCl₃): δ = 1.09 (t, J=7.1 Hz, 3H), 2.56 (s, 3H), 2.97 (s, 6H), 3.68 (s, 3H), 4.10 (q, J=7.1 Hz, 2H), 6.73 (d, J=8.9 Hz, 2H), 7.18 (d, J=8.9 Hz, 2H), 9.38 (br s, 1H). ¹³C NMR (CDCl₃): δ =14.0 (CH₃), 14.1 (CH₃), 40.7 (CH₃), 51.4 (CH₃), 59.4 (CH₂), 111.3 (CH), 113.9 (C), 117.4 (C), 122.2 (C), 130.9 (CH), 134.2 (C), 138.5 (C), 149.7 (C), 161.6 (C), 165.0 (C). ESI/HRMS (m/z): 331.1653 calcd for C₁₈H₂₃N₂O₄ [M+H]⁺, found 331.1670; 353.1472 calcd for C₁₈H₂₂N₂NaO₄ [M+Na]⁺; found 353.1480. IR (KBr, cm⁻¹): v 3298, 1699, 1666.

4-Ethyl 2-methyl 3-(4-methoxyphenyl)-5-methyl-1*H* **pyrrole-2,4-dicarboxylate (9i).** Compound **9i** (79 mg, 51%) was obtained from from 5-methoxy-3-(4-methoxyphenyl)isoxazole **1g** (100 mg, 0.49 mmol), ethyl 3-oxobutanoate **8b** (65 mg, 0.50mmol), FeCl₂·4H₂O (10 mg, 0.05 mmol, 10% mol), and NiCl₂·6H₂O (12 mg, 0.05 mmol, 10% mol), according to the general procedure under conditions indicated in table 4. Colorless solid, $R_f = 0.23$ (light petroleum/ethyl acetate 5:2) mp 148-149 °C (hexane). ¹H NMR (CDCl₃): $\delta = 1.06$ (t, J=7.2 Hz, 3 H), 2.57 (s, 3H), 3.67 (s, 3H), 3.84 (s, 3H), 4.07 (q, J=7.2 Hz, 2H), 6.89 (d, J=8.7 Hz, 2H), 7.21 (d, J=8.7 Hz, 2H), 9.26 (br s, 1H). ¹³C NMR (CDCl₃): $\delta = 13.9$ (CH₃), 14.1 (CH₃), 51.4 (CH₃), 55.2 (CH₃), 59.5 (CH₂), 112.5 (CH), 114.0 (C), 117.7 (C), 126.7 (C), 131.1 (CH), 133.4 (C), 138.5 (C), 158.7 (C), 161.4 (C), 164.8 (C). ESI/HRMS (m/z): 318.1336 calcd for C₁₇H₂₀NO₅ [M+H]⁺, found 318.1343; 340.1156 calcd for C₁₇H₁₉NNaO₅ [M+Na]⁺, found 340.1166. IR (KBr, cm⁻¹): v 3297, 1699, 1667.

Methyl 5-methyl-3-phenyl-4-(phenylcarbamoyl)-1*H*-pyrrole-2-carboxylate (9k). Compound 9k (79 mg, 50%) was obtained from 5-methoxy-3-phenylisoxazole 1a (83 mg, 0.47mmol), 3-oxo-*N*-phenylbutanamide 8c (84 mg, 0.47mmol), FeCl₂·4H₂O (10 mg, 0.05 mmol, 10% mol), and NiCl₂·6H₂O (12 mg, 0.05 mmol, 10% mol), according to the general procedure under conditions indicated in table 4. Colorless solid, R_f = 0.22 (light petroleum/ethyl acetate 2:1), mp 233-234 °C (hexane/ether 10/1). ¹H NMR (CDCl₃): δ = 2.70 (s, 3H), 3.66 (s, 3H), 6.92-7.03 (m, 4H), 7.15-7.19 (m, 2H), 7.43-7.45 (m, 2H), 7.50-7.52 (m, 3H), 9.50 (br s, 1H). ¹³C NMR (CDCl₃): δ = 14.1 (CH₃), 51.4 (CH₃), 116.8 (C), 117.3 (C), 119.2 (CH), 123.5 (CH), 128.5 (CH), 128.7 (CH), 128.8 (CH), 129.6 (C), 130.3 (CH), 133.9 (C), 138.0 (C), 138.8 (C), 161.3 (C), 162.7 (C). ESI/HRMS (m/z): 335.1391 calcd for C₂₀H₁₉N₂O₃ [M+H]⁺, found 335.1389; 357.1210 calcd for C₂₀H₁₈N₂NaO₃ [M+Na]⁺; found 357.1222. IR (KBr, cm⁻¹): v 3404, 3294, 1661.

Methyl 3-(4-bromophenyl)-5-methyl-4(phenylcarbamoyl)-1*H*-pyrrole-2-carboxylate (9l). Compound 9l (104 mg, 65%) was obtained from 3-(4-bromophenyl)-5-methoxyisoxazole 1f (100 mg, 0.39mmol), 3-oxo-N-phenylbutanamide 8c (70 mg, 0.39mmol), FeCl₂·4H₂O (8 mg, 0.04mmol, 10% mol), and NiCl₂·6H₂O (10 mg, 0.04mmol, 10% mol), according to the general procedure under conditions indicated in table 4. Colorless solid, R_f = 0.17 (light petroleum/ethyl acetate 2:1), mp 228-230 °C (hexane/ether 10/1). ¹H NMR (CDCl₃): δ = 2.67 (s, 3H), 3.69 (s, 3H), 6.82 (br s, 1H), 7.00-7.03 (m, 1H), 7.07 (d, J=7.8 Hz, 2H), 7.20-7.24 (m, 2H), 7.32 (d, J=8.4 Hz, 2H), 7.62 (d, J=8.4 Hz, 2H), 9.49 (br s, 1H). ¹³C NMR (CDCl₃): δ = 13.9 (CH₃), 51.6 (CH₃), 116.9 (C), 117.3 (C), 119.3 (CH), 122.8 (C), 123.8 (CH), 128.2 (C), 128.9 (CH), 131.8 (CH), 132.0 (CH), 132.7 (C), 137.8 (C), 138.7 (C), 161.0 (C), 162.5 (C).ESI/HRMS (m/z): 413.0496 calcd for C₂₀H₁₈BrN₂O₃ [M+H]⁺, found 413.0492; 435.0315 calcd for C₂₀H₁₇BrN₂NaO₃ [M+Na]⁺; found 435.0309. IR (KBr, cm⁻¹): v 3413, 3295, 1677, 1662.

References

[1] A. D. Clark, W. K. Janowski, R. H. Prager, Tetrahedron, 1999, 55, 3637-3648.

[2] T. Nishiwaki, T. Kitamura, A. Nakano, *Tetrahedron*, 1970, **55**, 453-465.

[3] A. J. Boulton, A. R. Katritzky, *Tetrahedron*, 1961, **12**, 41-50.

[4] R. G. Micetich, C. G. Chin, Canadian J. Chem., 1970, 48, 1371-1376.

[5] M. I. Komendantov, R. R. Bekmukhametov, R. R. Kostikov, *Chem. Heterocyclic Comp.*, 1978, **14**, 843-846.

[6] A. R. Katritzky, S. Øksne, A. J. Boulton, Tetrahedron, 1962, 18, 777-790.

[7] R. W. Guy, R. A. Jones, Australian J. Chem., 1966, 19, 1871-1885.

[8] M. R. Silva, A. M. Beja, J. A. Paixo, A. J. F. N. Sobral, S. H. Lopes, G. Rocha, Acta

Crystallographica Section C: Crystal Structure Communications, 2002, 58, 0685-0687.

[9] K. W. Law, T.-F. Lai, M. P. Sammes, A. R. Katritzky, T. C. W. Mak, J. Chem. Soc., Perkin Trans. 1, 1984, 111-118.

[10] M. P. Sammes, A. R. Katritzky, K. W. Law, Magn. Res. Chem., 1986, 24, 827-833.

- [11] S. Auricchio, A. M. Truscello, M. Lauria, S. V. Meille, *Tetrahedron*, 2012, 68, 7441-7449.
- [12] H. Fischer, Ch. E. Staff, *Hoppe-Seyler's Zeitschrift fuer Physiologische Chemie*, 1935, **234**, 97-126.

NMR Spectra 3-(4-(Dimethylamino)phenyl)isoxazol-5(4*H*)-one

3-Phenyl-5-(pyrrolidin-1-yl)isoxazole 1c

5-Methoxy-3-(4-(dimethylamino)phenyl)isoxazol 1e

Ethyl 4-acetyl-5-methyl-3-phenyl-1*H*-pyrrole-2-carboxylate 4a

Methyl 5-methyl-3-phenyl-1*H*-pyrrole-2-carboxylate 5

tert-Butyl 4-acetyl-5-methyl-3-phenyl-1*H*-pyrrole-2-carboxylate 4c

3-Acetyl-2-methyl-4-phenyl-5-(pyrrolidin-1-ylcarbonyl)-1H-pyrrol 4d

Methyl 4-acetyl-3-(4-chlorophenyl)-5-methyl-1*H*-pyrrole-2-carboxylate 4e

Methyl 4-acetyl-3-(4-(dimethylamino)phenyl)-5-methyl-1*H*-pyrrole-2-carboxylate 4f

Methyl 4-benzoyl-3-(4-bromophenyl)-5-phenyl-1*H*-pyrrole-2-carboxylate 4h

Methyl 4-benzoyl-3-(4-methoxyphenyl)-5-phenyl-1*H*-pyrrole-2-carboxylate 4i

Methyl 4-acetyl-3,5-dimethyl-1*H*-pyrrole-2-carboxylate 4k

Methyl 3-(4-chlorophenyl)-6,6-dimethyl-4-oxo-4,5,6,7-tetrahydro-1*H*-indole-2-carboxylate 7b

Methyl 3-(4-bromophenyl)-6,6-dimethyl-4-oxo-4,5,6,7-tetrahydro-1*H*-indole-2-carboxylate 7c

Methyl 6,6-dimethyl-3-(4-methoxyphenyl)-4-oxo-4,5,6,7-tetrahydro-1*H*-indole-2-carboxylate 7d

Methyl 3,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydro-1*H*-indole-2-carboxylate 7e

Methyl 4-benzoyl-5-ethoxy-3phenyl-1*H*-pyrrole-2-carboxylate 10a

Methyl 4-benzoyl-3-(4-chlorophenyl)-5-ethoxy-1H-pyrrole-2-carboxylate 10b

4-Ethyl 2-methyl 3-(4-methoxyphenyl)-5-phenyl-1*H*-pyrrole-2,4-dicarboxylate 9c

2-tert-Butyl 4-ethyl 5-methyl-3-phenyl-1H-pyrrole-2,4-dicarboxylate 9d

96 88 80 Chemical Shift (ppm)

4-Ethyl 2-methyl 3-(4-chlorophenyl)-5-methyl-1*H*-pyrrole-2,4-dicarboxylate 9f

Methyl 4-acetyl-3-(4-chlorophenyl)-5-ethoxy-1*H*-pyrrole-2-carboxylate 10d

4-Ethyl 2-methyl 3-(4-bromophenyl)-5-methyl-1*H*-pyrrole-2,4-dicarboxylate 9g

S36

Methyl 4-acetyl-3-(4-bromophenyl)-5-ethoxy-1*H*-pyrrole-2-carboxylate 10e

4-Ethyl 2-methyl 3-(4-(dimethylamino)phenyl)-5-methyl-1*H*-pyrrole-2,4-dicarboxylate 9h

4-Ethyl 2-methyl 3-(4-methoxyphenyl)-5-methyl-1*H*-pyrrole-2,4-dicarboxylate 9i

Methyl 5-methyl-3-phenyl-4-(phenylcarbamoyl)-1*H*-pyrrole-2-carboxylate 9k

Methyl 3-(4-bromophenyl)-5-methyl-4(phenylcarbamoyl)-1*H*-pyrrole-2-carboxylate 9l