The Siliconyl, Boronyl, and Iminoboryl Ligands as Analogues of the Well-known Carbonyl Ligand: Predicted Reactivity towards Dipolar Cyclooligomerization in Iron/Cobalt Carbonyl Complexes

Zhong Zhang,*^{a,b} Liang Pu,^a Qian-shu Li,^b R. Bruce King,*^c

^a College of Science, Northwest A&F University, Yangling, Shanxi 712100, P. R. China

^b School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, China 510006

^c Department of Chemistry and Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602, USA

Supporting Information

Theoretical Methods

Complete list of monomer and oligomer structures

Thermochemistry

Electronic Structure and Bonding Nature

Tables S4-S17: theoretical Cartesian coordinates for $Fe_n(CO)_{4n}(SiO)_n$ (6 structures), $Co_n(CO)_{4n}(BO)_n$ (n = 1 to 5) (5 structures), and $Co_m(CO)_{4m}(BNSiMe_3)_m$ (n = 1 to 3) (3 structures).

Complete Gaussian 09 reference (Reference 48)

1. Theoretical Methods

Morokuma Energy Decomposition Analyses (EDA)¹ were carried out for selected BP86 structures at the BP86/DZP level using the program package ADF.² The bonding dissociation energy is divided into two physically appealing entities:

$$\Delta E = \Delta E_{\rm prep} + \Delta E_{\rm in}$$

The preparation energy (ΔE_{prep}) is the energy required to promote the two fragments (A and B) from their isolated equilibrium geometry to the geometry that they have in the compound AB. The interaction energy (ΔE_{int}) is the interaction between the two prepared fragments in the molecule. In this study, ΔE_{prep} is sufficiently small to be neglected, so that only ΔE_{int} needs to be considered. This interaction energy can be separated into three major components:

$$\Delta E_{\text{int}} = \Delta E_{\text{els}} + \Delta E_{\text{Pauli}} + \Delta E_{\text{orb}}$$

In this equation the first term ΔE_{els} is the electrostatic interaction energy between the fragments, which is calculated using a frozen electron density distribution at the geometry of the complex. The second term ΔE_{Pauli} is the repulsive energy caused by Pauli repulsion. The last term ΔE_{orb} is the stabilization energy from relaxed orbital interaction between the prepared fragments. The ΔE_{orb} term can be further broken down into orbital contributions from different irreducible representations. This allows the prediction of separate energy contributions from σ and π interactions.

2. Complete list of monomer and oligomer structures

Figure S1. Optimized $Fe_n(CO)_{4n}(SiO)_n$, $Co_n(CO)_{4n}(BO)_n$, and $Co_n(CO)_{4n}(BNSiMe_3)_n$ (n = 1, 2) structures. The symmetry and relative free energies (unit in kcal/mol) are given in parenthesis. Hydrogen atoms are omitted for clarity. The Wiberg bond indices (WBIs) as well as the Natural Charges are given in italics. The bond distances are given in Å. The red bond distances and red relative energies are given by M06L/TZ2P level's calculation. The earlier theoretical parameters of Fe(CO)₄(SiO)³ and Co(CO)₄(BO)⁴ are given in underlined.

The metastable structures, i.e. **SiO1-II**, and **BO1-II**, are found to be transition states, lying 4.7 kcal/mol and 4.0 kcal/mol above their global minima **SiO1-I**, and **BO1-I**, respectively. In addition, the M06L/TZ2P level optimized structures as well as relative energies are quite closed to that of M06L/DZP level (Fig. S1). Our predicted $Fe(CO)_4(SiO)$ structures parameters (**SiO1-I** and **SiO1-II** in Fig. S1) are well consistent with the MP2 values with averaged differences less than 0.01 Å.3

Moreover, our predicted **BO1-I** structure parameters are better than the earlier LDA parameters by averaged differences of ~ 0.02 Å.4

Figure S2. Optimized $Fe_n(CO)_{4n}(Si_nO_n)$, $Co_n(CO)_{4n}(B_nO_n)$, and $(n = 3 \sim 5)$ structures. The symmetry and relative free energies (unit in kcal/mol) are given in parenthesis. Selected Wiberg bond indices (WBIs) are given in italics. The bond distances are given in Å.

The second lowest energy $Co_3(CO)_{12}(B_3O_3)$ and $Co_4(CO)_{16}(B_4O_4)$ structures, namely **BO3-II** and **BO4-II**, are analogous to the global minima structures **BO3-I** and **BO4-I**, but different with the arrangement of the three equatorial CO groups of $Co(CO)_4$ fragments. Such difference leads to a smaller relative energy of 0.3 kcal/mol and 4.6 kcal/mol above **BO3-I** and **BO4-I**. Thus, $Co_3(CO)_{12}(B_3O_3)$ and $Co_4(CO)_{16}(B_4O_4)$ molecules are potential fluxional systems.

3. Thermochemistry

In order to investigate the stability of $M_n(CO)_{4n}(L_n)$, several different reactions are reported in Table S1, including bond dissociation energies (BDEs) in terms of the ligand (BO⁻, BNSiMe₃⁻, and SiO) dissociation steps, as well as possible $M_n(CO)_{4n}(L_n)$ formation energies from mononuclear or smaller oligomers.

Reactions	L=S	iO	L=E	80 ⁻	L=B]	NR
	- ΔE_{zpe}	- Δ G	- ΔE_{zpe}	- Δ G	- ΔE_{zpe}	- Δ G
$2M(CO)_4(L) \rightarrow M_2(CO)_8(L_2)$	73.9	61.1	33.3	20.8	48.2	25.7
$3M(CO)_4(L) \rightarrow M_3(CO)_{12}(L_3)$	146.6	120.6	91.9	66.0	57.4	10.6
$4M(CO)_4(L) \rightarrow M_4(CO)_{16}(L_4)$	200.9	158.5	121.1	82.0		
$5M(CO)_4(L) \rightarrow M_5(CO)_{20}(L_5)$	254.6	199.2	159.7	103.8		
$M(CO)_4(L)+M_2(CO)_8(L_2) \rightarrow M_3(CO)_{12}(L_3)$	72.7	59.4	58.6	45.2	9.2	-15.1
$M(CO)_4(L) + M_3(CO)_{12}(L_3) \not \rightarrow M_4(CO)_{16}(L_4)$	54.3	38.0	29.1	16.0		
$\mathrm{M}(\mathrm{CO})_4(\mathrm{L}) + \mathrm{M}_4(\mathrm{CO})_{16}(\mathrm{L}_4) \mathrel{\bigstar} \mathrm{M}_5(\mathrm{CO})_{20}(\mathrm{L}_5)$	53.7	40.7	38.6	21.8		
$2\mathrm{M}_2(\mathrm{CO})_8(\mathrm{L}_2) \mathrm{M}_4(\mathrm{CO})_{16}(\mathrm{L}_4)$	53.1	36.2	54.4	40.4		
$M_2(CO)_8(L_2) + M_3(CO)_{12}(L_3) \rightarrow M_5(CO)_{20}(L_5)$	34.1	17.5	34.4	17.0		
$M(CO)_4 + L \rightarrow M(CO)_4(L)$	46.0	35.5	231.4	220.5	234.2	223.5

Table S1. Reaction energies (in kcal/mol) for the reported structures.

The Fe(CO)₄ \leftarrow (SiO) bond dissociation energy (*BDE*) is predicted to be 46.0 kcal/mol, which is slightly stronger than the experimental value of 37.0 kcal/mol for the *BDE* of Fe(CO)₄ \leftarrow (CO).⁵ Furthermore, the Co(CO)₄ \leftarrow L (L = BO⁻, BNSiMe₃⁻) are predicted to be 231.4 and 234.2 kcal/mol per cobalt atom, obviously indicating extremely strong Co(CO)₄ \leftarrow L interactions arising from ionic interaction between [Co(CO)₄]⁺ and L⁻ as well as the strong σ donation from L⁻ to [Co(CO)₄]⁺ (for details see the **binding nature** in the ESI). Comparing with the M \leftarrow CO interaction, the stronger M \leftarrow L interactions (L = BO⁻, BNSiMe₃⁻) therefore suggest that the reactive L ligands are well captured in the metal complexes.

The free energies of formation for $M_n(CO)_{4n}(L_n)$ from monomers or smaller oligomers (Table S2) indicate the thermodynamic instability of mononuclear $M(CO)_4(L)$ or oligomers $M_{n-1}(CO)_{4n-1}(L_{n-1})$, since the formation of $M_n(CO)_{4n}(L_n)$ always release free energy. Note that the zero-point corrected total electronic energy of formation for $[Co(CO)_4]_3(B_3N_3Si_3Me_9)$ is predicted to be 9.2 kcal/mol. However the free energy of formation is found to require 15.1 kcal/mol compensation, since three bulky SiMe₃ groups in **BN3-I** increase the steric repulsion as well as entropy effect. Furthermore, the most likely oligomerization process might be $M(CO)_4(L) +$ $M_{n-1}(CO)_{4n-1}(L_{n-1}) \rightarrow M_n(CO)_{4n}(L_n)$, because of the considerable free energy release and the smaller steric repulsion between mononuclear and smaller oligomers.

4 Electronic Structure and Bonding Nature

Figure S3. Comparing the frontier orbitals of CO, SiO, BO⁻, and BNSiMe₃⁻.

Table S3. Energy decomposition analysis of $Fe_n(CO)_{4n}(Si_nO_n)$, $Co_n(CO)_{n4}(B_nO_n)$, and $Co_n(CO)_{4n}(B_nN_nSi_nMe_{3n})$ (unit in kcal/mol).

	Fe(CO) ₅	SiO1-II	BO1-I	BN1-I	SiO2-I	BO2-I	SiO3-1	BO3-1
$\Delta E_{\rm int}$	-55.0	-47.7	-252.2	-264.9	-63.7	-263.1	-65.4	-266.2
ΔE_{Paul}	128.8	108.7	260.9	289.2	150.6	258.3	148.7	236.1
$\Delta E_{\rm els}$	-91.9	-65.6	-335.3	-354.3	-113.4	-295.5	-113.2	-262.1
$\Delta E_{\rm ster}$	36.8	43.1	-74.4	-65.0	37.3	-37.2	35.6	-26.0
$\Delta E_{\rm orb}$	-89.5	-88.7	-175.1	-195.9	-96.5	-219.5	-95.1	-232.09
a1*	-48.0	-58.4	-152.5	-165.4	-59.6	-211.3(a')	-58.9	
b_2	0.0	-0.1	-0.2	-0.3	-11.7	-8.2(a'')	-11.1	
e1*	-41.5	-30.2	-22.4	-30.3	-24.9(b ₁)	•••	-24.7(b ₁)	

*The a_1 presents the M \leftarrow L σ donation, and the e_1 term means the M \rightarrow L π * back donation.

The frontier orbitals of CO, SiO, BO⁻, and BNSiMe₃⁻ are compared in both shape and energy (Figure S4). The HOMO of these ligands (CO, SiO, BO⁻, BNR⁻) should be viewed as mainly the lone pair electrons localized on the carbon (percentage of 83.8% for CO), silicon (percentage of 56.3% for SiO), and boron atoms (percentage of 90.0% for BO⁻, and percentage of 74.8% for BNR⁻). For the corresponding LUMOs, the contributions of the carbon, silicon, and boron atoms are found to be 66.5% for C(O), 75.7% for Si(O), 74.6% for B(O), and 30.3% for B(NR), respectively. The HOMO and LUMO energies of these ligands can be divided into positive and negative groups, where the neutral CO and SiO belong to the negative group, and the overcharged BO⁻ and BNR⁻ belong to the positive one.

In the trigonal bipyramidal $Co(CO)_4(BO)$, the boronyl prefers the more spatial axial position to accommodate the 90.0% lone-pair electrons locating on the B(O). In contrast, the siliconyl in Fe(CO)₄(SiO) favors the equatorial position since the

relatively smaller contribution of the lone pair electrons of 56.3% on Si(O) leads to the equatorial position with less *trans-influence*.

The *BDE*s of $Fe(CO)_5$ and $Fe(CO)_4(SiO)$ are essentially identical, as indicated by our predicted $Fe(CO)_4 \leftarrow (SiO)$ BDE of 46.0 kcal/mol and the earlier MP2 Fe(CO)₄ \leftarrow (CO) *BDE* of 46.9 kcal/mol.⁶ However, the M \leftarrow L σ donation and M \rightarrow L π^* back donation in Fe(CO)₅ and Fe(CO)₄(SiO) are obviously different from each other, since the ratio of σ donation/ π^* back donation in Fe(CO)₅ is predicted to be 1.16 (slightly stronger σ donation), but the ratio in Fe(CO)₄(SiO) is found to be 1.93 (much stronger σ donation). Comparing with the carbon atom in carbonyl, the softer silicon atom in siliconyl can more readily donate than accept electrons. In addition, the binding nature between the positively charged $[Co(CO)_4]^+$ fragment and the negatively charged ligands (BO⁻ and BNR⁻) are strongly different from that in $Fe(CO)_4 \leftarrow (CO)$, since the ionic interactions as well as the $[M] \leftarrow (L) (L = BO^2, BNR^2)$ interactions lead to the much stronger interaction energies (E_{int} s). Actually, the E_{int} s of $[Co(CO)_4] \leftarrow (L)$ are reported to be -252.2 kcal/mol for $Co(CO)_4(BO)$, and -264.9 kcal/mol for Co(CO)₄(BNR), which are nearly five times that of Fe(CO)₅ or $Fe(CO)_4(SiO)$. Thus the E_{ints} originated from the attractive steric interactions (E_{sters}) $(-70.0\pm5.0 \text{ kcal/mol})$ for $[Co(CO)_4] \leftarrow (L)$ rather than the repulsive E_{sters} $(40.0\pm$ 4.0 kcal/mol) for Fe(CO)₅ or Fe(CO)₄(SiO), and stronger orbital interactions ($E_{orb}s$) $(-185 \pm 10.0 \text{ kcal/mol})$ for $[Co(CO)_4] \leftarrow (L)$. The stronger $E_{orb}s$, nearly twice that of the E_{orb} s of Fe(CO)₅ or Fe(CO)₄(SiO), mainly comes from the stronger σ donation instead of the weaker π^* back donation.

In the dimers (SiO2-I and BO2-I) and trimers (SiO3-I and BO3-I), the E_{ints} with respect to $[M_n(CO)_{4n}] \leftarrow (L)$ (M= Fe, Co; L = Si_nO_n, B_nO_n; n = 2, 3) increase further from -47.7 kcal/mol for Fe(CO)₄(SiO) and -252.2 kcal/mol for Co(CO)₄(BO) to -64.5 ± 1.0 kcal/mol for Fe_n(CO)_{4n}(Si_nO_n) and -264.7 ± 1.0 for Co_n(CO)_{4n}(B_nO_n), which mainly originat from the gradually increased σ donation of $[M_n(CO)_{4n}] \leftarrow (L)$ attributed to the more polarized Si-O/B-O bonds in the Si_nO_n/B_nO_n.

HOMO-12(-0.347) HOMO-13(-0.375) BO2-ts HOMO-14(-0.305) HOMO-17(-0.328) BN2-ts

Figure S4. Some important occupied orbitals for monomer, dimers, and transition states. The orbital energies are given in a. u. The partial atoms contribution are given in the sencond line parenthesis.

Center	Atomic	Atomic	Coord	rdinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	26	0	0.000000	0.000000	0.250547	
2	6	0	0.000000	1.580319	1.132656	
3	6	0	0.000000	-1.580319	1.132656	
4	6	0	1.814502	0.000000	0.216763	
5	8	0	0.000000	2.582050	1.711786	
6	8	0	-2.970630	0.000000	0.216246	
7	8	0	0.000000	-2.582050	1.711786	
8	8	0	0.000000	0.000000	-3.402140	
9	8	0	2.970630	0.000000	0.216246	
10	6	0	-1.814502	0.000000	0.216763	
11	14	0	0.000000	0.000000	-1.881332	

Table S4. The theoretical Cartesian coordinates (in Å) for the structure SiO1-I using the M06L/DZP method

Table S5. The theoretical Cartesian coordinates (in Å) for the structure SiO1-II using the M06L/DZP method

Center	Atomic	Atomic Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z	
1	26	0	0.000000	0.000000	0.239874	
2	6	0	0.000000	1.806312	0.224827	
3	6	0	1.564312	-0.903156	0.224827	
4	6	0	-1.564312	-0.903156	0.224827	
5	6	0	0.000000	0.000000	2.035288	
6	14	0	0.000000	0.000000	-1.913410	
7	8	0	0.000000	2.965434	0.258949	
8	8	0	0.000000	0.000000	-3.431121	
9	8	0	-2.568141	-1.482717	0.258949	
10	8	0	2.568141	-1.482717	0.258949	
11	8	0	0.000000	0.000000	3.190824	

Standard orientation:

Sum of electronic and zero-point Energies=	-2081.823195
Sum of electronic and thermal Free Energies=	-2081.863692

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	27	0	0.000000	0.000000	0.148017
2	6	0	0.000000	0.000000	1.967303
3	6	0	0.000000	1.789377	-0.092496
4	6	0	-1.549646	-0.894689	-0.092496
5	6	0	1.549646	-0.894689	-0.092496
6	8	0	-2.537819	-1.465211	-0.263291
7	8	0	0.000000	0.000000	3.118481
8	8	0	0.000000	2.930421	-0.263291
9	8	0	0.000000	0.000000	-2.988829
10	8	0	2.537819	-1.465211	-0.263291
11	5	0	0.000000	0.000000	-1.770718

Table	S6 .	The	theoretical	Cartesian	coordinates	(in	Å)	for	the	structure	BO1-I	using	the
M06L/	DZP	meth	nod										

Standard orientation:								
Center	Atomic	Atomic	Coord	dinates (Angst	roms)			
Number	Number	Туре	Х	Y	Z			
1	27	0	0.000000	0.000000	1.717281			
2	6	0	0.000000	0.000000	3.532543			
3	6	0	1.540242	-0.889259	1.434067			
4	6	0	0.000000	1.778518	1.434067			
5	6	0	-1.540242	-0.889259	1.434067			
6	8	0	0.000000	2.914703	1.222114			
7	8	0	0.000000	0.000000	4.685286			
8	8	0	2.524207	-1.457352	1.222114			
9	8	0	-2.524207	-1.457352	1.222114			
10	5	0	0.000000	0.000000	-0.213007			
11	7	0	0.000000	0.000000	-1.476840			
12	14	0	0.000000	0.000000	-3.200905			
13	6	0	1.531833	0.884404	-3.807040			
14	1	0	2.444595	0.391827	-3.456810			
15	1	0	1.571064	0.907054	-4.901639			
16	1	0	1.561630	1.921168	-3.456810			
17	6	0	-1.531833	0.884404	-3.807040			
18	1	0	-1.571064	0.907054	-4.901639			
19	1	0	-2.444595	0.391827	-3.456810			
20	1	0	-1.561630	1.921168	-3.456810			
21	6	0	0.000000	-1.768808	-3.807040			
22	1	0	0.000000	-1.814108	-4.901639			
23	1	0	0.882965	-2.312995	-3.456810			
24	1	0	-0.882965	-2.312995	-3.456810			

Table S7. The theoretical Cartesian coordinates (in Å) for the structure BN1-I using the M06L/DZP method

Sum of electronic and zero-point Energies=	-1955.632736
Sum of electronic and thermal Free Energies=	-1955.676345

		Standard orie	ntation:	_	
Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	26	0	3.339134	. 0.000000	0.000000
2	26	0	-3.339134	0.000000	0.000000
3	6	0	-3.167682	1.797963	0.000000
4	6	0	-3.167682	-1.797963	0.000000
5	6	0	-4.330619	0.000000	1.512942
6	6	0	-4.330619	0.000000	-1.512942
7	6	0	4.330619	0.000000	1.512942
8	6	0	3.167682	1.797963	0.000000
9	6	0	4.330619	0.000000	-1.512942
10	6	0	3.167682	-1.797963	0.000000
11	8	0	-3.050733	2.949651	0.000000
12	8	0	-4.960701	0.000000	-2.484358
13	8	0	-4.960701	0.000000	2.484358
14	8	0	-3.050733	-2.949651	0.000000
15	8	0	4.960701	0.000000	2.484358
16	8	0	3.050733	2.949651	0.000000
17	8	0	4.960701	0.000000	-2.484358
18	8	0	3.050733	-2.949651	0.000000
19	14	0	-1.212371	0.000000	0.000000
20	14	0	1.212371	0.000000	0.000000
21	8	0	0.000000	1.174938	0.000000
22	8	0	0.000000	-1.174938	0.000000
Sum of elec	tronic and zero		-4	- 163.778126	
um of elec	tronic and ther	mal Free Energies	-4	163.837996	

Table S8. The theoretical Cartesian coordinates (in Å) for the structure SiO2-I using the M06L/DZP method

Standard orientation:								
Center	Atomic	Atomic	Coordinates (Angstroms)					
Number	Number	Туре	Х	Y	Z			
1	8	0	1.077333	. 0.000000	-0.220426			
2	8	0	-1.077333	0.000000	-0.220426			
3	5	0	0.000000	0.906373	-0.192416			
4	5	0	0.000000	-0.906373	-0.192416			
5	27	0	0.000000	-2.866711	-0.009959			
6	27	0	0.000000	2.866711	-0.009959			
7	6	0	0.000000	2.283118	1.675066			
8	6	0	0.000000	4.665630	0.299313			
9	6	0	-1.557436	2.786311	-0.922095			
10	6	0	1.557436	2.786311	-0.922095			
11	6	0	0.000000	-2.283118	1.675066			
12	6	0	-1.557436	-2.786311	-0.922095			
13	6	0	1.557436	-2.786311	-0.922095			
14	6	0	0.000000	-4.665630	0.299313			
15	8	0	0.000000	-1.878173	2.760831			
16	8	0	2.560023	-2.729435	-1.492274			
17	8	0	0.000000	-5.800820	0.500374			
18	8	0	-2.560023	-2.729435	-1.492274			
19	8	0	-2.560023	2.729435	-1.492274			
20	8	0	2.560023	2.729435	-1.492274			
21	8	0	0.000000	1.878173	2.760831			
22	8	0	0.000000	5.800820	0.500374			
Sum of ele	ectronic and zer	ro-point Energie	s= -	3872.612025				
Sum of ele	ectronic and the	ermal Free Energ	gies= -	3872.670691				

Table S9. The theoretical Cartesian coordinates (in Å) for the structure BO2-I using the M06L/DZP method

	Standard orientation:									
Center	Atomic	Atomic	Coord	dinates (Angst	roms)					
Number	Number	Туре	Х	Y	Z					
1	5	0	0.000000	0.923734	-0.059906					
2	27	0	0.000000	2.973800	-0.187939					
3	27	0	0.000000	-2.973800	-0.187939					
4	6	0	0.000000	-2.498471	1.517425					
5	6	0	1.479621	-2.832259	-1.209866					
6	6	0	-1.479621	-2.832259	-1.209866					
7	6	0	0.000000	2.498471	1.517425					
8	6	0	1.479621	2.832259	-1.209866					
9	6	0	-1.479621	2.832259	-1.209866					
10	6	0	0.000000	4.779481	0.038432					
11	8	0	0.000000	2.192438	2.640528					
12	8	0	-2.415264	2.741517	-1.886570					
13	8	0	0.000000	5.922406	0.203725					
14	8	0	2.415264	2.741517	-1.886570					
15	8	0	2.415264	-2.741517	-1.886570					
16	8	0	-2.415264	-2.741517	-1.886570					
17	8	0	0.000000	-2.192438	2.640528					
18	8	0	0.000000	-5.922406	0.203725					
19	7	0	1.119755	0.000000	-0.027698					
20	7	0	-1.119755	0.000000	-0.027698					
21	5	0	0.000000	-0.923734	-0.059906					
22	14	0	2.848819	0.000000	0.324022					
23	14	0	-2.848819	0.000000	0.324022					
24	6	0	-3.252948	1.501946	1.364012					
25	1	0	-2.689822	1.505325	2.303450					
26	1	0	-3.070276	2.458055	0.864323					
27	1	0	-4.317473	1.476472	1.626086					
28	6	0	-3.252948	-1.501946	1.364012					
29	1	0	-3.070276	-2.458055	0.864323					
30	1	0	-2.689822	-1.505325	2.303450					
31	1	0	-4.317473	-1.476472	1.626086					
32	6	0	-3.863392	0.000000	-1.255227					
33	1	0	-4.506688	-0.884026	-1.314025					
34	1	0	-4.506688	0.884026	-1.314025					
35	1	0	-3.235036	0.000000	-2.150648					
36	6	0	3.863392	0.000000	-1.255227					
37	1	0	4.506688	0.884026	-1.314025					

38	1	0	4.506688	-0.884026	-1.314025	
39	1	0	3.235036	0.000000	-2.150648	
40	6	0	3.252948	-1.501946	1.364012	
41	1	0	3.070276	-2.458055	0.864323	
42	1	0	4.317473	-1.476472	1.626086	
43	1	0	2.689822	-1.505325	2.303450	
44	6	0	3.252948	1.501946	1.364012	
45	1	0	3.070276	2.458055	0.864323	
46	1	0	2.689822	1.505325	2.303450	
47	1	0	4.317473	1.476472	1.626086	
48	6	0	0.000000	-4.779481	0.038432	
Sum of electronic and zero-point Energies= -4649.974668						
Sum of electronic and thermal Free Energies= -4650.046306						

Standard orientation:							
Center Number	Atomic Number	Atomic Type	Coord X	- dinates (Angst: Y	roms) Z		
1	8	0	0.000000	1.501845	0.000000		
2	8	0	-1.300636	-0.750922	0.000000		
3	8	0	1.300636	-0.750922	0.000000		
4	14	0	1.542345	0.890473	0.000000		
5	14	0	-1.542345	0.890473	0.000000		
6	14	0	0.000000	-1.780947	0.000000		
7	26	0	3.394666	1.959911	0.000000		
8	26	0	0.000000	-3.919823	0.000000		
9	26	0	-3.394666	1.959911	0.000000		
10	6	0	2.352729	3.434506	0.000000		
11	6	0	4.255492	2.456910	1.509448		
12	6	0	4.150734	0.320270	0.000000		
13	6	0	4.255492	2.456910	-1.509448		
14	6	0	1.798005	-3.754776	0.000000		
15	6	0	0.000000	-4.913819	1.509448		
16	6	0	-1.798005	-3.754776	0.000000		
17	6	0	0.000000	-4.913819	-1.509448		
18	6	0	-4.150734	0.320270	0.000000		
19	6	0	-4.255492	2.456910	1.509448		
20	6	0	-2.352729	3.434506	0.000000		
21	6	0	-4.255492	2.456910	-1.509448		
22	8	0	4.804495	2.773876	2.479032		
23	8	0	1.680522	4.376991	0.000000		
24	8	0	4.804495	2.773876	-2.479032		
25	8	0	2.950324	-3.643870	0.000000		
26	8	0	0.000000	-5.547753	-2.479032		
27	8	0	0.000000	-5.547753	2.479032		
28	8	0	-2.950324	-3.643870	0.000000		
29	8	0	4.630846	-0.733121	0.000000		
30	8	0	-4.630846	-0.733121	0.000000		
31	8	0	-1.680522	4.376991	0.000000		
32	8	0	-4.804495	2.773876	-2.479032		
33	8	0	-4.804495	2.773876	2.479032		

Table S11. The theoretical Cartesian coordinates (in Å) for the structure SiO3-I using the M06L/DZP method

Sum of electronic and zero-point Energies=	-6245.684092
Sum of electronic and thermal Free Energies=	-6245.761151

Table	S12 .	The	theoretical	Cartesian	coordinates	(in	Å)	for	the	structure	BO3-I	using	the
M06L/	DZP 1	netho	od										

		Input orie	entation:		
Center	Atomic	Atomic	Coord	- dinates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	8	0	0.806190	1.097505	-0.031655
2	8	0	0.550409	-1.255020	-0.067023
3	8	0	-1.359288	0.142849	-0.060627
4	6	0	-2.971495	2.334588	-0.263230
5	6	0	-1.971211	4.814084	0.294888
6	6	0	-0.644370	2.876032	1.697887
7	6	0	-0.263529	3.399893	-1.300471
8	6	0	-3.166382	-1.791261	0.813245
9	6	0	-3.091033	-4.180812	-0.498379
10	6	0	-1.728105	-2.247091	-1.868841
11	6	0	-0.684720	-3.630594	0.674147
12	6	0	2.844024	-0.097865	1.744808
13	6	0	3.119784	-2.028585	-0.633081
14	6	0	3.406916	1.030174	-1.050830
15	6	0	5.170401	-0.516218	0.353720
16	8	0	-2.340964	5.897694	0.433533
17	8	0	-3.983827	1.825339	-0.485677
18	8	0	0.464070	3.568594	-2.184384
19	8	0	-3.900077	-1.159573	1.444442
20	8	0	0.174471	-4.181163	1.216351
21	8	0	-3.779719	-5.082791	-0.703663
22	8	0	-1.540297	-1.907693	-2.963589
23	8	0	-0.150227	2.707313	2.733786
24	8	0	2.475925	0.095600	2.828721
25	8	0	3.397894	1.945702	-1.756821
26	8	0	6.305198	-0.598657	0.542337
27	8	0	2.929732	-3.080530	-1.071082
28	5	0	1.381530	-0.154929	-0.034159
29	5	0	-0.562726	1.267919	-0.023991
30	5	0	-0.821166	-1.126953	-0.085800
31	27	0	3.374216	-0.378498	0.073121
32	27	0	-1.365891	3.106863	0.085829
33	27	0	-2.007556	-2.747397	-0.190960

Sum of electronic and zero-point Energies=	-5808.984902
Sum of electronic and thermal Free Energies=	-5809.061435

Table S13. The theoretical Cartesian coordinates (in Å) for the structure BN3-I using the M06L/DZP method

Input orientation:							
Center	Atomic	Atomic	Coord	dinates (Angst	roms)		
Number	Number	Туре	Х	Y	Z		
1	27	0	1.582093	2.949805	0.451358		
2	27	0	1.759422	-2.837487	0.474215		
3	27	0	-3.343173	-0.099662	0.459316		
4	6	0	1.392529	1.875615	1.893767		
5	6	0	3.283188	3.481756	0.677174		
6	6	0	1.478296	2.832705	-1.296037		
7	6	0	0.684095	4.449615	0.928624		
8	6	0	0.921388	-2.160559	1.930845		
9	6	0	1.381923	-4.579269	0.686329		
10	6	0	1.708826	-2.686895	-1.272987		
11	6	0	3.506491	-2.806204	0.952969		
12	6	0	-2.318225	0.286307	1.900630		
13	6	0	-4.666228	1.093504	0.682711		
14	6	0	-3.196479	-0.129793	-1.288485		
15	6	0	-4.185564	-1.627243	0.951149		
16	8	0	4.361064	3.880249	0.829028		
17	8	0	1.291462	1.156328	2.795200		
18	8	0	0.242897	5.471745	1.249982		
19	8	0	0.351765	-1.740265	2.846642		
20	8	0	4.609788	-2.945206	1.278962		
21	8	0	1.197458	-5.714515	0.831309		
22	8	0	1.790343	-2.789255	-2.444512		
23	8	0	1.520372	2.944887	-2.467954		
24	8	0	-1.648274	0.565425	2.802707		
25	8	0	-3.323973	-0.149931	-2.459583		
26	8	0	-4.851188	-2.513469	1.289467		
27	8	0	-5.558729	1.817462	0.833862		
28	7	0	-0.794316	1.248472	-0.724670		
29	7	0	1.474577	0.066365	-0.720640		
30	7	0	-0.684481	-1.308928	-0.724042		
31	5	0	0.755632	-1.185834	-0.625679		
32	5	0	-1.410222	-0.060457	-0.629343		
33	5	0	0.649272	1.252956	-0.626557		
34	14	0	-1.798844	2.814331	-0.809672		
35	14	0	-1.533805	-2.963361	-0.810388		
36	14	0	3.331734	0.148904	-0.812869		
37	6	0	-1.822459	-3.619452	0.921407		

38	1	0	-1.049395	-4.328846	1.225961
39	1	0	-1.866708	-2.836055	1.684287
40	1	0	-2.778791	-4.153228	0.950420
41	6	0	-0.660465	-4.251260	-1.866770
42	1	0	0.269043	-4.696825	-1.519533
43	1	0	-1.393538	-5.065644	-1.929743
44	1	0	-0.500454	-3.895164	-2.889063
45	6	0	-3.145303	-2.973105	-1.780200
46	1	0	-3.411337	-4.037643	-1.806723
47	1	0	-4.014012	-2.445896	-1.392483
48	1	0	-2.997120	-2.658961	-2.817740
49	6	0	4.051649	0.214828	0.916564
50	1	0	4.326571	1.229789	1.212323
51	1	0	3.377004	-0.183309	1.681117
52	1	0	4.966500	-0.386487	0.950173
53	6	0	4.140331	-1.243866	-1.787049
54	1	0	5.198316	-0.951213	-1.799816
55	1	0	4.103563	-2.265354	-1.414012
56	1	0	3.804427	-1.256387	-2.828278
57	6	0	4.007463	1.547318	-1.871928
58	1	0	3.927860	2.573115	-1.520018
59	1	0	5.078724	1.319804	-1.941858
60	1	0	3.610873	1.510007	-2.891127
61	6	0	-0.996720	4.222000	-1.769796
62	1	0	-1.779811	4.991708	-1.771175
63	1	0	-0.094353	4.699340	-1.393536
64	1	0	-0.822862	3.949554	-2.815140
65	6	0	-2.224924	3.391921	0.922032
66	1	0	-3.212456	3.053109	1.243539
67	1	0	-1.502738	3.064464	1.676353
68	1	0	-2.238159	4.487273	0.941429
69	6	0	-3.340122	2.704974	-1.879303
70	1	0	-4.198892	2.140115	-1.525738
71	1	0	-3.665764	3.749002	-1.967618
72	1	0	-3.107307	2.362061	-2.891976

Sum of electronic and zero-point Energies=	-6974.938308
Sum of electronic and thermal Free Energies=	-6975.024880

Table S14. The theoretical Cartesian coordinates (in Å) for the structure SiO4-I using the M06L/DZP method

Standard orientation:							
Center	Atomic	- dinates (Angst	roms)				
Number	Number	Туре	Х	Y	Z		
1	8	0	1.299869	1.299869	0.000000		
2	8	0	1.299869	-1.299869	0.000000		
3	8	0	-1.299869	-1.299869	0.000000		
4	8	0	-1.299869	1.299869	0.000000		
5	14	0	2.148230	0.000000	0.538561		
6	14	0	0.000000	-2.148230	-0.538561		
7	14	0	0.000000	2.148230	-0.538561		
8	14	0	-2.148230	0.000000	0.538561		
9	26	0	0.000000	-3.941056	-1.713882		
10	26	0	0.000000	3.941056	-1.713882		
11	26	0	-3.941056	0.000000	1.713882		
12	26	0	3.941056	0.000000	1.713882		
13	6	0	1.796096	3.782531	-1.630863		
14	6	0	0.000000	3.942347	-3.520732		
15	6	0	-1.796096	3.782531	-1.630863		
16	6	0	0.000000	5.603986	-0.998306		
17	6	0	-3.942347	0.000000	3.520732		
18	6	0	-3.782531	1.796096	1.630863		
19	6	0	-5.603986	0.000000	0.998306		
20	6	0	-3.782531	-1.796096	1.630863		
21	6	0	-1.796096	-3.782531	-1.630863		
22	6	0	0.000000	-3.942347	-3.520732		
23	6	0	0.000000	-5.603986	-0.998306		
24	6	0	1.796096	-3.782531	-1.630863		
25	6	0	3.782531	-1.796096	1.630863		
26	6	0	3.942347	0.000000	3.520732		
27	6	0	5.603986	0.000000	0.998306		
28	6	0	3.782531	1.796096	1.630863		
29	8	0	3.656117	-2.946599	1.581099		
30	8	0	6.666551	0.000000	0.538688		
31	8	0	3.935079	0.000000	4.679241		
32	8	0	3.656117	2.946599	1.581099		
33	8	0	2.946599	3.656117	-1.581099		
34	8	0	0.000000	3.935079	-4.679241		
35	8	0	-2.946599	3.656117	-1.581099		
36	8	0	0.000000	6.666551	-0.538688		
37	8	0	2 946599	-3 656117	-1 581099		

38	8	0	0.000000	-6.666551	-0.538688
39	8	0	0.000000	-3.935079	-4.679241
40	8	0	-2.946599	-3.656117	-1.581099
41	8	0	-3.656117	-2.946599	1.581099
42	8	0	-3.935079	0.000000	4.679241
43	8	0	-6.666551	0.000000	0.538688
44	8	0	-3.656117	2.946599	1.581099
Sum of ele Sum of ele	ectronic and zero-p ectronic and therm	ooint Energies= al Free Energie	= -8 es= -8	327.640941 327.733733	

Table S15. The theoretical Cartesian coordinates (in Å) for the structure BO4-I using the M06L/DZP method

		Input orier	itation:			
Center	Atomic	Atomic	Coord	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	8	0	-1.187788	1.185616	-0.279943	
2	8	0	-1.187788	-1.185616	-0.279943	
3	8	0	1.187788	-1.185616	-0.279943	
4	8	0	1.187788	1.185616	-0.279943	
5	6	0	-1.529109	2.362195	2.233964	
6	6	0	0.000000	4.594670	2.667671	
7	6	0	1.529109	2.362195	2.233964	
8	6	0	0.000000	3.897825	0.032343	
9	6	0	5.040858	0.000000	-2.639832	
10	6	0	3.883672	-1.550740	-0.719873	
11	6	0	2.325609	0.000000	-2.867792	
12	6	0	3.883672	1.550740	-0.719873	
13	6	0	-1.529109	-2.362195	2.233964	
14	6	0	0.000000	-3.897825	0.032343	
15	6	0	0.000000	-4.594670	2.667671	
16	6	0	1.529109	-2.362195	2.233964	
17	6	0	-3.883672	1.550740	-0.719873	
18	6	0	-5.040858	0.000000	-2.639832	
19	6	0	-2.325609	0.000000	-2.867792	
20	6	0	-3.883672	-1.550740	-0.719873	
21	8	0	-4.066615	2.555462	-0.177908	
22	8	0	-1.521044	0.000000	-3.704617	
23	8	0	-5.975186	0.000000	-3.316400	
24	8	0	-4.066615	-2.555462	-0.177908	
25	8	0	-2.502987	1.857497	2.600337	
26	8	0	0.000000	5.546486	3.318779	
27	8	0	2.502987	1.857497	2.600337	
28	8	0	0.000000	4.419489	-1.005257	
29	8	0	2.502987	-1.857497	2.600337	
30	8	0	0.000000	-5.546486	3.318779	
31	8	0	0.000000	-4.419489	-1.005257	
32	8	0	-2.502987	-1.857497	2.600337	
33	8	0	4.066615	2.555462	-0.177908	
34	8	0	5.975186	0.000000	-3.316400	
35	8	0	1.521044	0.000000	-3.704617	
36	8	0	4.066615	-2.555462	-0.177908	
37	5	0	1.769150	0.000000	-0.627761	

38	5	0	0.000000	1.645052	0.212153
39	5	0	0.000000	-1.645052	0.212153
40	5	0	-1.769150	0.000000	-0.627761
41	27	0	3.552427	0.000000	-1.589930
42	27	0	0.000000	3.104431	1.617153
43	27	0	-3.552427	0.000000	-1.589930
44	27	0	0.000000	-3.104431	1.617153
Sum of electro	onic and zero-p	oint Energies=	-7′	745.303379	
Sum of electro	onic and therma	al Free Energies	s= -7'	745.398613	

Table S16. The theoretical Cartesian coordinates (in Å) for the structure SiO5-I using the M06L/DZP method

Standard orientation:						
Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	8	0	1.638196	- -0.091474	0.002256	
2	8	0	0.764493	2.178901	0.846429	
3	8	0	-1.599282	1.389591	0.141742	
4	8	0	-1.582107	-1.156311	-0.125703	
5	8	0	0.617097	-2.290808	-0.860605	
6	14	0	-0.786546	-2.586011	-0.051546	
7	14	0	-2.612508	0.114299	-0.014952	
8	14	0	1.955323	1.083474	1.109033	
9	14	0	1.888692	-1.282731	-1.105738	
10	14	0	-0.597006	2.681195	0.076530	
11	26	0	-4.755993	0.131254	-0.088212	
12	26	0	-1.369016	-4.441571	0.855833	
13	26	0	3.512395	-1.532779	-2.485146	
14	26	0	3.569967	1.233977	2.511857	
15	26	0	-0.959605	4.609793	-0.791419	
16	6	0	2.728175	2.739152	3.053069	
17	6	0	5.071993	2.113305	2.022111	
18	6	0	3.613800	0.561244	4.192002	
19	6	0	4.113686	-0.305673	1.765856	
20	6	0	4.940993	-2.519540	-1.981228	
21	6	0	4 155808	-0.043139	-1 716688	
22	6	0	3.620351	-0.844545	-4.155806	
23	6	0	0.615117	5 050944	-0 023444	
24	6	0	-2 402837	3 810430	-1 509769	
25	6	0	-1 924015	5 836713	0 126515	
26	6	0	-0.408310	5 201760	-2 407672	
20	6	0	-4 602439	1 812218	0 545101	
27	6	0	-5 807299	-0 384920	1 291861	
20	6	0	-4 576344	-1 563052	-0.669965	
30	6	0	-5 634565	0.682228	-0.007703	
31	6	0	-2.467559	-5 563101	-0.0/5001	
31	6	0	2 715880	-3.303101	1 563363	
32	0	0	-2.713880	-3.403270	2 480066	
24	0	0	-0.880257	5.076244	2.400000	
54 25	0 2	0	0.142038	-3.070244	0.090208	
23 26	0	0	2.380281	-2.9/2431	-5.003/20	
30	8	0	-3.314999	3.20/3/2	-1.9/8041	
51	8	0	-0.052061	5.5//3/1	-5.444047	

	38	8	0	-2.553081	6.609259	0.715964
-	39	8	0	1.631824	5.312829	0.466024
2	40	8	0	4.544680	0.912912	-1.183110
2	41	8	0	3.685958	-0.401394	-5.224011
2	42	8	0	5.850971	-3.145555	-1.634676
2	43	8	0	1.986680	-3.888711	-3.441460
2	44	8	0	6.029661	2.669171	1.684919
2	45	8	0	3.639690	0.126674	5.265357
2	46	8	0	2.175549	3.698060	3.393378
2	47	8	0	4.436141	-1.292571	1.244214
2	48	8	0	-3.567765	-2.842325	2.022175
2	49	8	0	1.119612	-5.468046	-0.385547
	50	8	0	-0.563789	-5.464482	3.520760
	51	8	0	-3.181194	-6.265298	-0.626622
	52	8	0	-4.484280	2.888346	0.960698
-	53	8	0	-6.178641	1.054688	-2.523119
	54	8	0	-6.468081	-0.733700	2.176291
-	55	8	0	-4.428449	-2.654048	-1.036864
Sum o	Sum of electronic and zero-point Energies=			-1040	09.556782	
~ ~						

Sum of electronic and ze	ero-point Energies=	-10409.556782
Sum of electronic and th	nermal Free Energies=	-10409.668914

Table S17. The theoretical Cartesian coordinates (in Å) for the structure BO5-I using the M06L/DZP method

Standard orientation:						
Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	8	0	-0.746743	-1.174262	0.576793	
2	8	0	-1.756043	0.057673	-1.130509	
3	8	0	-0.557180	2.065520	-0.601768	
4	8	0	1.286266	0.605242	-0.781068	
5	8	0	1.608202	-1.306706	0.541217	
6	6	0	-2.054180	-2.044878	-2.957324	
7	6	0	-3.522616	-2.111139	-0.281956	
8	6	0	-3.239055	-4.285903	-1.925327	
9	6	0	-0.895527	-3.702834	-0.626167	
10	6	0	0.526978	-1.838573	5.031990	
11	6	0	-1.263137	-2.433617	3.007901	
12	6	0	0.575914	-0.021957	2.972503	
13	6	0	-4.190891	1.293933	-1.603441	
14	6	0	-2.608140	3.832949	-0.809811	
15	6	0	-5.000514	3.097935	0.288666	
16	6	0	-2.946132	1.526788	1.196038	
17	6	0	1.721928	3.630647	-1.533373	
18	6	0	2.944699	4.837596	0.577913	
19	6	0	2.991947	2.126143	0.895677	
20	6	0	0.461916	3.808586	1.230524	
21	6	0	4.267737	-1.667430	-0.138447	
22	6	0	3.857381	0.570590	-2.126946	
23	6	0	4.708796	-1.951147	-2.820745	
24	6	0	2.030470	-1.878606	-2.325170	
25	6	0	1.722408	-2.940736	2.829433	
26	8	0	-2.023155	4.782297	-1.115342	
27	8	0	-2.592456	0.989873	2.164902	
28	8	0	-5.967955	3.590357	0.678168	
29	8	0	-4.636998	0.609694	-2.422477	
30	8	0	-2.332557	-2.831273	2.822086	
31	8	0	0.661990	1.121416	2.761481	
32	8	0	0.607834	-1.870585	6.182146	
33	8	0	2.543637	-3.707861	2.561194	
34	8	0	-4.305663	-1.592731	0.401042	
35	8	0	-3.843542	-5.199295	-2.286032	
36	8	0	-1.900887	-1.507823	-3.968514	
37	8	0	0.022126	-4.184696	-0.107113	

38	8	0	4.056170	1.681102	-2.382128	
39	8	0	1.039863	-2.333721	-2.734655	
40	8	0	5.452648	-2.472571	-3.531273	
41	8	0	4.746510	-1.968196	0.868350	
42	8	0	1.578182	3.795659	-2.673105	
43	8	0	-0.490697	4.044259	1.840697	
44	8	0	3.607031	5.756985	0.792507	
45	8	0	3.643374	1.253274	1.295623	
46	5	0	-1.719014	1.366471	-0.734919	
47	5	0	-1.462517	-1.150135	-0.583341	
48	5	0	0.781725	1.815634	-0.447506	
49	5	0	0.420166	-1.378133	1.226727	
50	5	0	1.980434	-0.534821	-0.525115	
51	27	0	-3.462363	2.318377	-0.306286	
52	27	0	1.907956	3.382281	0.216679	
53	27	0	3.512725	-1.152960	-1.701852	
54	27	0	0.407993	-1.760716	3.215725	
55	27	0	-2.297552	-2.835655	-1.349771	
Sum of electro	um of electronic and zero-point Energies=			681.651766		

Sum of electronic and zero-point Energies=	-9681.651766
Sum of electronic and thermal Free Energies=	-9681.759257

Complete Gaussian 09 reference (Reference 48)

Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

References

- (1) Velde, G. Te; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J. Comput. Chem., 2001, 22, 931.
- (2) Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. *Theor. Chem. Acc.* **1998**, *99*, 391.
- (3) Radius, U.; Bickelhaupt, F. M.; Ehler, A. W.; Goldberg, N.; Hoffmann, R. *Inorg. Chem.* **1998**, *37*, 1080.
- (4) Ehlers, A. W.; Baerends, E. J.; Bickelhaupt, F. M.; Radius, U. Chem. Eur. J. 1998, 4, 210.
- (5) Sunderlin, L. S.; Wang, D.; Squires, R. R. J. Am. Chem. Soc. **1993**, 115, 12060.
- (6) Ehlers, A. W.; Frenking, G. Organometallics 1995, 14, 423.