Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Fig. S1 XRD pattern of the Pt-Pd-Ru nanodendrites. The positions of pure Pt, Pd and Ru at the

bottom are taken from the JCPDS database.

Fig. S2 XPS spectra of the Pt-Pd-Ru nanodendrites centered on Pt 4f(a), Pd 3d(b) and Ru 3p(c).

Fig. S3 TEM images of the intermediate samples after (a) 10 seconds, (b) 5 minutes and (c) 10 minutes of reaction, respectively.

Fig. S4 TEM images of the nanostructures produced by using (a) formic acid and (b) NaBH₄ as reducing agents to replace ascorbic acid in the typical synthesis.

Fig. S5 TEM images of the nanostructures synthesized by using of 0.1 M (a) and 0.2 M (b) AA, respectively, under the typical synthetic condition.

Fig. S6 TEM images of the nanostructures produced by using CTAC as capping agents instead of Pluronic F127 in the typical synthesis.

Fig. S7 TEM images of the nanostructures synthesized without (a) and with (b) 0.001 g Pluronic

F127, under the typical synthetic condition.

Fig. S8 TEM image of the Pt-Pd-Ru nanodendrites prepared from 10 mM of Pt precursor.

Fig. S9 CVs for durability tests of Pt-Pd-Ru nanodendrites (a and b) and Pt/C (c and d) in 0.1 M $HClO_4$ without (a and c) and with 1 M CH₃OH (b and d) at a scan rate of 50 mV s⁻¹. The current densities are normalized in reference to the geometric area of the working electrode.

Table S1 The comparisons of synthetic routes, morphologies and the MOR mass activities of thePt-Pd-Ru nanodendrites with the reported trimetallic nanoparticles.

Catalyst	Synthetic route	Electrolyte	Mass activity (mA μg ⁻¹)	Ref.
Pt-Pd-Ru	One-step synthesis at room temperature	0.1 M HClO ₄ +	1.82	This
Nanodenderites	(RT)	1 M CH ₃ OH		work
Au@PdPt	Chemical reduction with AA/Hydrazine	$0.1 \text{ M HClO}_4 +$	1.48	1
	followed by heating to 95°C	0.5 M CH ₃ OH		
Au@Cu ₆₄ Pt ₃₆	AuNPs was synthesized at RT	$0.1 \text{ M HClO}_4 +$	0.44	2
	followed by coating with CuPt via	0.1 M CH ₃ OH		
	consecutive thermal cycles between			
	120-200°C			
Au@Pd@Pt	Chemical reduction at RT	$0.5 \text{ M H}_2\text{SO}_4 +$	0.43	3,4
		1 M CH ₃ OH		

Table S2 The comparison of synthetic routes, morphologies and ORR mass activities of Pt-Pd-Ru

 nanodendrites with the reported trimetallic nanoparticles.

Catalyst	Synthetic method	Electrolyte	Mass activity (mA.µg ⁻¹)	Ref.
Pt-Pd-Ru	One-step synthesis at RT	0.1 M HClO ₄	1.5	This
Nanodenderites				work
PtPd ₀₋₈₅ Bi _{0.15}	Chemical reduction by NaBH ₄	0.5 M HClO ₄	1.16	5
Nanowires	followed by thermal cycles			
PtPd _{0.85} Bi _{0.15}	between 90-200°C		0.67	
Nanospheres				
Fe ₁₀ Pt ₇₅ Cu ₁₅	Consecutive thermal	0.1 M HClO ₄	1.034	6
Nanorods	decomposition cycles till			
	240°C			
PtNiFe	Thermal decomposition	0.1 M HClO ₄		7
Octahydrans			0.553	
Nanowires			0.532	
Polyhydrans			0.464	
Nanocubes			0.335	
PtCu ₃ Co	Impregnation cu and Co	0.1 M HClO ₄	0.49	8
Nanospheres	precursors with commercial			
PtCu ₂ Co ₂	Pt/C followed by freeze drying		0.37	
Nanospheres	then reductive annealing			
PtCuCo ₃	method		0.37	
Nanospheres				
CoCuPt	CoNPs was synthesized by	0.1 M HClO ₄	0.15	9
Nanospheres	reduction with NaBH ₄			
	followed by coating with CuPt			
	and annealing to 200°C			

References

- 1. S. Kang, Y. Lee, Y. Park, B. Choi, J. Hong, K. Park, and S. Han, ACS Nano, 2013, 7, 7945-7955.
- X. Sun, D. Li, Y. Ding, W. Zhu, S. Guo, L. Wang, and S. Sun, J. Am. Chem. Soc., 2014, 136, 5745-5749.
- 3. L. Wang and Y. Yamauchi, J. Am. Chem. Soc., 2010, 132, 13636-13638.
- 4. L. Wang and Y. Yamauchi, Chem. Mater., 2011, 23, 2457-2465.
- 5. H. Liao and Y. Hou, Chem. Mater., 2013, 25, 457-465.
- 6. H. Zhu, S. Zhang, S. Guo, D. Su, and S. Sun, J. Am. Chem. Soc., 2013, 135, 7130-7133.
- 7. S. Chou, J. Shyue, C. Chien, C. Chen, Y. Chen, and P. Chou, Chem. Mater., 2012, 24, 2527-2533.
- 8. R. Srivastava, P. Mani, N. Hahn, and P. Strasser, Angew. Chem. Int. Ed., 2007, 119, 8988-8991.
- 9. J. Wu, Z. Peng, and H. Yang, Phil. Trans. R. Soc.A., 2010, 368, 426-4274.