Synthesis of conjugated covalent organic frameworks/graphene composite for supercapacitor electrode

Peiyuan Wang^{*a,b}, Qiong Wu^b, Lifeng Han^a, Shen Wang^b, Shaoming Fang^b, Zhihong Zhang^{b,c} and Shumin Sun^{*b,c}

^{*a*} Henan Provincial Key Laboratory Surface and Interface Science, Zhengzhou

University of Light Industry, Zhengzhou 450002, P. R. China. E-mail:

peiyuanwang@zzuli.edu.cn; Fax: +86-371-86609676.

^b College of Materials and Chemical Engineering, Zhengzhou University of Light

Industry, Zhengzhou 450002, P. R. China. E-mail: smsun@zzuli.edu.cn.

^c Collaborative Innovation Center of Environmental Pollution Control and Ecological

Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China.

Chemicals and Regents

1,3,5-Triformylbenzene was synthesized as reported elsewhere.^{S1} Graphene oxide (GO) was prepared via a modified Hummers method.^{S2} Amine modified reduced graphene oxide (NH₂-rGO) was prepared by one-pot solvothermal process with GO as raw material in the presence of ammonia.^{S3} All other reagents were of analytical grade and used as purchased without further purification.

Synthesis of conjugated covalent organic frameworks/graphene composite, COFs and NH₂-rGO-CHO.

NH₂-rGO (48mg) was weighed into a small vial and disperse in 6.0 mL of 1,4dioxane. After being stirred for 0.5 h, 1,3,5-triformylbenzene (48mg), 1,4diaminobenzene (48 mg) and acetic acid aqueous (0.6 mL 3.0 mol/L) was added to the above dispersion successively under mild stirring. All the above dispersion transferred into a Teflon-lined autoclave and heated at 120 °C for 2 days. Afterwards, the obtained dark green solid was isolated by centrifugation, washed with N,Ndimethylformamide (3×10 mL) and tetrahydrofuran (3×10 mL), and dried at 80 °C under vacuum for 12 h to yield a new composite COFs/NH₂-rGO (Scheme 1). In order to compare the energy storage properties of COFs/NH₂-rGO, COFs was prepared with the same method for fabricating COFs/graphene without adding NH₂rGO into the reaction. In order to confirm the formation of imine bonds between graphene and COFs, NH₂-rGO was treated with 1,3,5-triformylbenzene in the presence of acetic acid to obtained a sample NH₂-rGO-CHO.

Characterization

The products were visualized using a JSM-7001F field emission scanning electron microscopy (FE-SEM). X-ray diffraction (XRD) spectra were obtained on a Bruker D8 Advance X-ray diffractometer. Fourier transform infrared (FT-IR) analysis was conducted on a BRUKER TENSOR FT-IR spectroscopy. Solid-state ¹³C CP-MAS NMR spectra were carried out on a Varian infinity-plus 400 spectrometer. The X-ray photoelectron spectroscopy (XPS) was performed on VG ESCALAB HP photoelectron spectrometer. Raman spectra were measured using a Renishaw inVia Raman microscope with 532 nm wavelength excitation.

Electrochemical studies were carried out in a three-electrode system with a Na₂SO₄ electrolyte solution (1 mol L⁻¹). Freshly prepared material on nickel mesh, a platinum electrode, and a saturated calomel electrode (SCE) were used as the working, counter, and reference electrodes, respectively. The working electrode was fabricated by mixing 80 wt% prepared material, 10 wt% poly(tetrafluoroethylene) binder, and 10 wt% Ketjenblack (EC-600JD) in an agate mortar. An appropriate amount of ethanol was then added to this mixture to make slurry, which was subsequently coated on Ni foam $(1 \times 1 \text{ cm}^2)$ and dried in an oven at 110 °C for 2 h. The Ni foams with active materials were finally pressed under 10 MPa to obtain the working electrodes. Cyclic voltammetry (CV) was carried out on a CHI 660E electrochemical workstation. Galvanostatic charge–discharge cycle tests were performed on a CT2001A-LAND cell test system.

References

- S1 N. Kaur, J. G. Delcros, J. Imran, A. Khaled, M. Chehtane, N. Tschammer, B. Martin, O. Phanstiel, *J. Med. Chem.*, 2008, **51**, 1393.
- S2 D.C Marcano, DV Kosynkin, JM Berlin, A Sinitskii, Z Sun, A Slesarev, L.B. Alemany, W. Lu and J. M. Tour, *ACS Nano*, 2010, 4, 4806.
- S3 L. F. Lai, L. W. Chen, D. Zhan, L. Sun, J. P. Liu, S. H. Lim, C. K. Poh, Z. X. Shen and J.Y. Lin, *Carbon*, 2011, 49, 3250.

Fig. S1 Raman spectra of Graphite, GO, NH_2 -rGO, Graphene and COFs/ NH_2 -rGO.

Fig. S2 IR spectra of NH₂-rGO, NH₂-rGO-CHO, COFs/NH₂-rGO and COFs.