Supporting Information for

Supramolecular Structures Ranging from Nano- to Macro-Scale with Fluorescent and Organic Semiconducting Properties

Yanjun Gong^a, Qiongzheng Hu^b, Ni Cheng^a, Yanhui Bi^a, Wenwen Xu^{a, c}, Li Yu^{a*}

^a Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, PR China. ^b Department of Chemistry, University of Houston, Houston 77204, United States.

^c School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China.

Contents

Fig. S1 Chemical structures of (a) R6G and (b) NaAOT.

Fig. S2 CV measurement of R6G-NaAOT complex at different rates. Fc=ferrocene.

Fig. S3 AFM images of sphere-like nanoparticles formed by R6G and NaAOT

compounds after 40 min of incubation: (a) high image; (b) phase image.

Fig. S4 ¹H NMR spectra of (a) R6G-NaAOT complex, (b) R6G and (c) NaAOT.

Fig. S5 SAXS pattern of R6G-NaAOT complex.

Fig. S6 FTIR spectrum of R6G-NaAOT complex.

Fig. S7 Optimized structures of (a) R6G and (b) R6G-NaAOT complex with three possible positions (ΔE_1 =-272.2, ΔE_2 =-294.7, ΔE_3 =-299.9 kJ/mol).

Fig. S8 Fluorescent spectra of R6G and R6G-NaAOT complex.

Fig. S9 UV/Vis spectra of R6G and R6G-NaAOT complex.

Fig. S10 ¹H NMR spectra of (a) $CO(NH_2)_2$ and (b) R6G-NaAOT supramolecular complex prepared in the presence of $CO(NH_2)_2$.

Fig. S11 Optimized geometry of the complex formed by R6G and NaAOT compounds. Energy minimization was achieved by DFT calculation (B3LYP/6-31G) using Gaussian 09 program.

Fig. S1 Chemical structures of (a) R6G and (b) NaAOT.

Fig. S2 CV measurements of R6G-NaAOT complex at different scan rate. Fc=ferrocene.

Fig. S3 AFM images of sphere-like nanoparticles formed by R6G and NaAOT compounds after 40 min of incubation: (a) high image; (b) phase image.

Fig. S4 ¹H NMR spectra of R6G-NaAOT complex (a), R6G (b) and NaAOT (c).

Fig. S5 SAXS pattern of R6G-NaAOT complex.

Fig. S6 FTIR spectrum of R6G-NaAOT complex.

Fig. S7 Optimized structures of (a) R6G and (b) R6G-NaAOT complex with three possible positions (ΔE_1 =-560.9, ΔE_2 =-386.38, ΔE_3 =-549.7 kJ/mol).

Fig. S8 Fluorescent spectra of R6G (black line) and R6G-NaAOT (red line) complex as a thin film.

Fig. S9 UV/Vis spectra of R6G (black line) and R6G-NaAOT (red line) complex as a thin film.

Fig. S10 ¹H NMR spectra of $CO(NH_2)_2$ (a) and R6G-NaAOT (b) supramolecular complex prepared in the presence of $CO(NH_2)_2$.

Fig. S11 Optimized geometry of the complex formed by R6G and NaAOT compounds.