Copper-Catalyzed Trifluoromethylation of Organic Zinc Reagents with Electrophilic Trifluoromethylating Reagent

Chang-Sheng Wang, ${ }^{\dagger}$ Haoyang Wang, ${ }^{\S}$ Cheng Yao, ${ }^{\dagger}{ }^{, *}$
\dagger College of Science, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China e-mail: yaochengnjut@126.com, yaocheng@njtech.edu.cn
§ Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

Supporting Information

Contents:

\qquad
General Information S2
General Procedure for Copper-Catalyzed Trifluoromethylation of Zinc
Reagents. S3
Mechanistic Experiments Section S14
Copies of the ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds $\mathbf{4 a}-\mathrm{m}, \mathbf{1 b}-\mathbf{e}$ S20
X-Ray Diffraction data of Single Crystal of bimetallic copper(II) species
8. S43

General information. All solvents were purified by standard method. ${ }^{1} \mathrm{H}$ NMR, ${ }^{19} \mathrm{~F}$ NMR spectra and ${ }^{13} \mathrm{C}$ NMR were recorded on $400 \mathrm{MHz}, 376 \mathrm{MHz}$ and 101 MHz spectrometer, respectively. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR chemical shifts were determined relative to internal standard TMS at $\delta 0.0 \mathrm{ppm}$ and ${ }^{19} \mathrm{~F}$ NMR chemical shifts were determined relative to CFCl_{3} as internal standard. Chemical shifts (δ) are reported in ppm, and coupling constants (J) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, br $=$ broad. All reactions were monitored by TLC or ${ }^{19} \mathrm{~F}$ NMR. Flash column chromatograph was carried out using 300-400 mesh silica gel at medium pressure.

Materials. All reagents were received from commercial sources. Pure CuI was freshly prepared under the condition of the reference (Dieter, R. K. J. Am. Chem. Soc. 1985, 107, 4679). Solvents were freshly dried and degassed according to the purification handbook Purification of Laboratory Chemicals before using.

General Procedure for the Preparation of Zinc Reagent.

Anhydrous $\mathrm{LiCl}(381 \mathrm{mg}, 9.0 \mathrm{mmol})$ was placed in an argon-flushed flask and dried 30 min at $150{ }^{\circ} \mathrm{C}$ under vacuum (1 mbar). Zinc powder ($13.5 \mathrm{mmol}, 883 \mathrm{mg}, 1.5$ equiv, 150 mesh, Chemetall, 99.9 \% or 325 mesh, Strem, 99.9%); in the case of active sensitive substrates 1.4 equiv) was added under Ar and heterogeneous mixture of Zn and LiCl was dried again for 30 min at $150{ }^{\circ} \mathrm{C}$ under vacuum (1 mbar). The reaction flask was cooled to room temperature and then evacuated and refilled with argon three times. THF (10 mL) was added and Zn was activated by $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ ($5.0 \mathrm{~mol} \%$) and $\mathrm{Me}_{3} \mathrm{SiCl}(1.0 \mathrm{~mol} \%)$. The aryl iodide or aryl bromide (9 mmol) was added neat at the room temperature. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$. The completion of the insertion reaction was checked by GC analysis of reaction aliquots quenched with a solution of $\mathrm{NH}_{4} \mathrm{Cl}$ in water (the conversion was more than 96%). An aliquot of organozinc reagent (1.0 mL) was titrated using iodine. The titrated organozinc reagent solution in THF (9.0 mL) were carefully separated from the remaining zinc powder using a syringe and transferred to another dry and argon-flushed flask.

Reference: Krasovskiy, A.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 6040.
General procedure for Copper-Catalyzed Trifluoromethylation of Organic Zinc

Reagents with Electrophilic Trifluoromethylating Reagent

Freshly prepared $\mathrm{CuI}(28 \mathrm{mg}, \quad 0.15 \mathrm{mmol})$, Togni's reagent II ($474 \mathrm{mg}, 1.5 \mathrm{mmol}$) and anhydrous DMF (5.0 mL) were placed into an oven-dried Schlenk tube that is equipped with a stirring bar under argon, after that organozinc reagents in THF ($0.5 \mathrm{mmol}, 0.3 \mathrm{M}, 1.65 \mathrm{~mL}$) was then added dropwise. The reaction was stirred at room temperature and monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy until the disappearance of Togni's reagent II (typically 20 minute). 25 mL of Distilled water and 10 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added and the organic phase was separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The product was purified by flash chromatography on silica gel with pentane and further purified by preparation TLC.

4-(Trifluoromethyl)-1,1'-biphenyl (4a). Freshly prepared CuI ($28 \mathrm{mg}, 0.15 \mathrm{mmol}$), Togni's reagent II (474 mg, 1.50 mmol) and anhydrous DMF (5.0 mL) were placed into an oven-dried Schlenk tube that is equipped with a stirring bar under Ar. Organozinc reagents (0.5 mmol) was then added dropwise. The reaction was stirred at room temperature until the disappearance of Togni's reagent II (typically 20 min as monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy). The product was purified by flash chromatography on silica gel with pentane and isolated as a white solid in 64% yield $(71 \mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 144.7,139.7,129.0,128.2,127.4,127.3,125.7,125.7,121.6(\mathrm{q}, J=271.7 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl_{3}) $\delta-62.42$ (s, 3 F) ppm. MS (EI) m/z (\%): 222 (100).

Reference: Chu, L.-L; Qing, F.-L.Org. Lett. 2010, 12, 5060.

1-(Benzyloxy)-4-(trifluoromethyl)benzene (4b). Freshly prepared CuI ($28 \mathrm{mg}, 0.15$ $\mathrm{mmol})$, Togni's reagent II ($474 \mathrm{mg}, 1.50 \mathrm{mmol}$) and anhydrous DMF $(5.0 \mathrm{~mL})$ were placed into an oven-dried Schlenk tube that is equipped with a stirring bar under Ar. Organozinc reagents $(0.5 \mathrm{mmol})$ was then added dropwise. The reaction was stirred at room temperature until the disappearance of Togni's reagent II (typically 20 min as monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy). The product was purified by flash chromatography on silica gel with pentane and isolated as a white solid in 54% yield $(68 \mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $4 \mathrm{H}), 7.35(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.1,136.2,128.7,128.3,127.5,127.0(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 124.4(\mathrm{q}, J=$ $271.1 \mathrm{~Hz}), 122.7(\mathrm{~d}, J=32.8 \mathrm{~Hz}), 114.8,70.1 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.56$ (s, 3 F) ppm. MS (EI) m/z (\%): 252.1, 91.1(100).

Reference: Gamido, E. M.; Gamido, J.; Calheiros, R.; Marques, M.; Borges, F. J. Phys.Chem. A 2009, 113, 9934.

4-((4-(Trifluoromethyl)phenoxy)methyl)benzonitrile (4c). Freshly prepared CuI ($28 \mathrm{mg}, 0.15 \mathrm{mmol}$), Togni's reagent II ($474 \mathrm{mg}, 1.50 \mathrm{mmol}$) and anhydrous DMF $(5.0 \mathrm{~mL})$ were placed into an oven-dried Schlenk tube that is equipped with a stirring bar under Ar. Organozinc reagents $(0.5 \mathrm{mmol})$ was then added dropwise. The reaction was stirred at room temperature until the disappearance of Togni's reagent II (typically 20 min as monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy). The product was purified by flash chromatography on silica gel with pentane and isolated as a white solid in 32% yield (44 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.55(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.2,142.7,132.4,129.7,128.6(\mathrm{q}, J=282.4 \mathrm{~Hz}), 127.6$, 121.5, 118.9, 114.8, 111.7, 68.6; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.67$ (s, 3 F) ppm. MS (EI) m/z(\%) 277.1, 116.1(100). HRMS (EI) Calcd for: $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}: 277.0714$; Found: 277.0719. IR (thin film): $v_{\max } 3059,2228,1611,1600,1586,1497,1485,1450$, $1377,1311,1244,1078,1054,823,752,687,549 \mathrm{~cm}^{-1} . \mathrm{Mp}: 58-60^{\circ} \mathrm{C}$

Phenethyl 4-(trifluoromethyl)benzoate (4d). Freshly prepared CuI ($28 \mathrm{mg}, 0.15$ $\mathrm{mmol})$, Togni's reagent II ($474 \mathrm{mg}, 1.50 \mathrm{mmol}$) and anhydrous DMF (5.0 mL) were placed into an oven-dried Schlenk tube that is equipped with a stirring bar under Ar. Organozinc reagents $(0.5 \mathrm{mmol})$ was then added dropwise. The reaction was stirred at room temperature until the disappearance of Togni's reagent II (typically 20 min as monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy). The product was purified by flash chromatography on silica gel with pentane and isolated as a colorless liquid in 65\%
yield (95 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 3 \mathrm{H}), 4.57(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J$ $=6.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,137.7,132.4(\mathrm{~d}, J=246.9 \mathrm{~Hz}$, 0 H), 130.1, 129.1, 128.6, 126.9, 125.6, 125.5, 123.8 ($\mathrm{q}, ~ J=272.8 \mathrm{~Hz}$), 66.1, 35.3; ${ }^{19} \mathrm{~F}$ NMR (376MHz, CDCl_{3}) δ-63.18 (s, 3 F) ppm. MS (EI) m/z(\%) 293.1($\mathrm{M}^{+}-1$), 104.1(100). HRMS (EI) Calcd for: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{2}\left(\mathrm{M}^{+}-1\right)$: 293.0789; Found: 293.0790. IR (thin film): $v_{\max } 3066,2960,1724,1497,1513,1412,1326,1311,1275,1169$, $1128,1066,1018,775,749,700 \mathrm{~cm}^{-1}$.

Reference: Zhang, C.; Feng, P.; Jiao, N. J. Am. Chem. Soc. 2013,135, 15257.

Piperidin-1-yl(4-(trifluoromethyl)phenyl)methanone (4e). Freshly prepared CuI ($28 \mathrm{mg}, 0.15 \mathrm{mmol}$), Togni's reagent II ($474 \mathrm{mg}, 1.50 \mathrm{mmol}$) and anhydrous DMF $(5.0 \mathrm{~mL})$ were placed into an oven-dried Schlenk tube that is equipped with a stirring bar under Ar. Organozinc reagents $(0.5 \mathrm{mmol})$ was then added dropwise. The reaction was stirred at room temperature until the disappearance of Togni's reagent II (typically 20 min as monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy). The product was purified by flash chromatography on silica gel with pentane. The compound was further purified by prep-HPLC with a C18 column (Kineten, $4.6 \times 100 \mathrm{~mm}, 2.6 \mu \mathrm{~m}$) using a water-acetonitrile mixed solvent as the eluent $\left(\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=50: 50\right.$, flow $=1.8$ $\mathrm{mL} / \mathrm{min}, 250 / 220 \mathrm{~nm}$) to give the titled compound as a white solid in 60% yield (77 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2$ H), 3.73 (s, 2 H), $3.30(\mathrm{~s}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 4 \mathrm{H}), 1.53(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 168.8,140.0,131.4(\mathrm{q}, ~ J=32.7 \mathrm{~Hz}), 127.1,125.5(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.8(\mathrm{q}$, $J=272.3 \mathrm{~Hz}), 48.7,43.2,26.5,25.5,24.5 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.90(\mathrm{~s}, 3$ F) ppm. MS (EI) m/z (\%) 255.9 (100).

Reference: Wang, X.; Wang, J.-B. J. Am. Chem. Soc. 2013,135, 10330.

2-Methyl-2-(4-(trifluoromethyl)phenyl)-1,3-dioxolane (4f). Freshly prepared CuI ($28 \mathrm{mg}, 0.15 \mathrm{mmol}$), Togni's reagent II ($474 \mathrm{mg}, 1.50 \mathrm{mmol}$) and anhydrous DMF $(5.0 \mathrm{~mL})$ were placed into an oven-dried Schlenk tube that is equipped with a stirring bar under Ar. Organozinc reagents $(0.5 \mathrm{mmol})$ was then added dropwise. The reaction was stirred at room temperature until the disappearance of Togni's reagent II (typically 20 min as monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy). The product was purified by flash chromatography on silica gel with pentane and isolated as a white solid in 67% yield $(78 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 143.3,137.4,127.5,126.7(\mathrm{q}, J=258.1 \mathrm{~Hz}), 108.6,93.8$, 64.6, 27.7, 27.6; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.54 (s, 3 F) ppm. MS (EI) m/z (\%) 232.1 (100).

Reference: Kondolff, I.; Doucet, H.; Santelli, M. Eur. J. Org. Chem. 2006, 3, 765.

2-(4-Methoxyphenoxy)-5-(trifluoromethyl)pyridine(4g). Freshly prepared CuI (28 $\mathrm{mg}, 0.15 \mathrm{mmol}$), Togni's reagent II ($474 \mathrm{mg}, 1.50 \mathrm{mmol}$) and anhydrous DMF (5.0 mL) were placed into an oven-dried Schlenk tube that is equipped with a stirring bar under Ar. Organozinc reagents $(0.5 \mathrm{mmol})$ was then added dropwise. The reaction was stirred at room temperature until the disappearance of Togni's reagent II (typically 20 min as monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy). The product was purified by flash chromatography on silica gel with pentane and isolated as a light yellow liquid in 68% yield $(91 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87$ (dd, $J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.09-7.04$ (m, 2 H), $6.99-6.92(\mathrm{~m}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 166.2,157.0,146.4,145.4$ (dd, $J=8.4,4.1 \mathrm{~Hz}$), 136.6 $(\mathrm{d}, J=3.0 \mathrm{~Hz}), 126.4(\mathrm{q}, J=271.3 \mathrm{~Hz}), 122.4,121.2(\mathrm{q}, J=33.2 \mathrm{~Hz}), 114.8,111.0$, 55.5; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.68$ (s, 3 F) ppm. MS (EI) m/z (\%) 269.1
(100). HRMS (EI) Calcd for: $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{2}$: 269.0664; Found: 269.0661. IR (thin film): $v_{\max } 3070,2935,2838,1616,1508,1487,1442,1397,1327,1286,1244,1196$, 1127, 1078, 1036, 835, $819 \mathrm{~cm}^{-1}$.

3-(Trifluoromethyl)quinoline (4h). Freshly prepared $\mathrm{CuI}(28 \mathrm{mg}, 0.15 \mathrm{mmol}$), Togni's reagent II ($474 \mathrm{mg}, 1.50 \mathrm{mmol}$) and anhydrous DMF $(5.0 \mathrm{~mL})$ were placed into an oven-dried Schlenk tube that is equipped with a stirring bar under Ar. Organozinc reagents $(0.5 \mathrm{mmol})$ was then added dropwise. The reaction was stirred at room temperature until the disappearance of Togni's reagent II (typically 20 min as monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy). The product was purified by flash chromatography on silica gel with pentane and isolated as a colorless liquid in 60% yield (59 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.09(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1$ H) ; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.83(\mathrm{~s}, 3 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 149.3, 146.0 (d, $J=3.0 \mathrm{~Hz}$), 133.9 (q, $J=2.2 \mathrm{~Hz}$), 131.7, 130.0, 128.6, 128.0, 126.2, 123.6 (q, $J=272.3 \mathrm{~Hz}$), 123.6 ($\mathrm{q}, J=33.0 \mathrm{~Hz}$) ppm. MS (EI) m/z (\%): 197.1(100).

Reference: Jiang, X.-L.; Qing, F.-L. J. Org. Chem. 2012, 77, 1251

8-(Trifluoromethyl)quinoline (4i). Freshly prepared CuI ($28 \mathrm{mg}, 0.15 \mathrm{mmol}$), Togni's reagent II ($474 \mathrm{mg}, 1.50 \mathrm{mmol}$) and anhydrous DMF (5.0 mL) were placed into an oven-dried Schlenk tube that is equipped with a stirring bar under Ar. Organozinc reagents $(0.5 \mathrm{mmol})$ was then added dropwise. The reaction was stirred at room temperature until the disappearance of Togni's reagent II (typically 20 min as monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy). The product was purified by flash chromatography on silica gel with pentane and isolated as a light yellow liquid in 53\% yield (52 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.07(\mathrm{dd}, J=4.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.21 (dd,
$J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.2$, 144.7, 136.2, 132.4, 128.6, 128.0 (q, $J=5.7 \mathrm{~Hz}$), $127.8(\mathrm{q}, J=29.2 \mathrm{~Hz}), 125.2,124.1$ $(\mathrm{q}, J=273.4 \mathrm{~Hz}), 121.9 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.26(\mathrm{~s}, 3 \mathrm{~F}) \mathrm{ppm} . \mathrm{MS}$ (EI) m/z(\%): 197.1(100).

Reference: Dai, J.-J.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 8436.

(3,3,3-Trifluoroprop-1-ene-1,1,2-triyl)tribenzene (4j). Freshly prepared CuI (28 mg , $0.15 \mathrm{mmol})$, Togni's reagent II ($474 \mathrm{mg}, 1.50 \mathrm{mmol}$) and anhydrous DMF (5.0 mL) were placed into an oven-dried Schlenk tube that is equipped with a stirring bar under Ar. Organozinc reagents $(0.5 \mathrm{mmol})$ was then added dropwise. The reaction was stirred at room temperature until the disappearance of Togni's reagent II (typically 20 min as monitored by ${ }^{19}$ F NMR spectroscopy). Yields were determined by ${ }^{19} \mathrm{~F}$ NMR analysis of the crude product using p-Fluorotoluene as an internal standard in 57% yield. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-55.62(\mathrm{~s}, 3 \mathrm{~F}) \mathrm{ppm}$. MS (EI) m/z (\%) 324.2 (100). HRMS (EI) Calcd for: $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3}\left(\mathrm{M}^{+}\right)$: 324.1126; Found: 324.1131.

Reference: Liu, X.; Shimizu, M.; Hiyama, T. Angew. Chem. Int. Ed. 2004, 43, 879.

Methyl \quad 4'-(2,2,2-trifluoroethyl)-[1,1'-biphenyl]-2-carboxylate(4k). Freshly prepared $\mathrm{CuI}(28 \mathrm{mg}, 0.15 \mathrm{mmol})$, Togni's reagent II ($474 \mathrm{mg}, 1.50 \mathrm{mmol}$) and anhydrous DMF (5.0 mL) were placed into an oven-dried Schlenk tube that is equipped with a stirring bar under Ar. Organozinc reagents (0.5 mmol) was then added dropwise. The reaction was stirred at room temperature until the disappearance of Togni's reagent II (typically 20 min as monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy). The
product was purified by flash chromatography on silica gel with pentane and isolated as a white solid in 56% yield (82 mg). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31(\mathrm{dd}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{q}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.8,141.9,141.2,131.4,130.9,130.7,129.9,129.8,129.0,128.6$, 127.4, $125.8(\mathrm{q}, J=276.6 \mathrm{~Hz}), 51.9,40.0(\mathrm{q}, J=29.8 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $(376 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-65.88(\mathrm{t}, J=10.8 \mathrm{~Hz}, 3 \mathrm{~F}) \mathrm{ppm} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%)$ 294.1, 263.1 (100). HRMS (EI) Calcd for: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{2}$: 294.0868; Found: 294.0870. IR (thin film): $v_{\max }$ $3063,2958,2928,1720,1596,1436,1260,1132,809,762,725,708,664,652 \mathrm{~cm}^{-1}$. $\mathrm{Mp}: 70-72{ }^{\circ} \mathrm{C}$.

4'-(2,2,2-Trifluoroethyl)-[1,1'-biphenyl]-2-carbonitrile (4I). Freshly prepared CuI (28 mg, $0.15 \mathrm{mmol})$, Togni's reagent II ($474 \mathrm{mg}, 1.50 \mathrm{mmol}$) and anhydrous DMF (5.0 mL) were placed into an oven-dried Schlenk tube that is equipped with a stirring bar under Ar. Organozinc reagents (0.5 mmol) was then added dropwise. The reaction was stirred at room temperature until the disappearance of Togni's reagent II (typically 20 min as monitored by ${ }^{19}$ F NMR spectroscopy). The product was purified by flash chromatography on silica gel with pentane and isolated as a light yellow liquid in 48% yield (62 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), \delta 7.46(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{q}, J=10.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.7,138.0,133.8,132.9,130.8,130.7,130.5,130.0,127.8,125.7$ (q, $J=276.9$ $\mathrm{Hz}), 118.6,111.2,39.9(\mathrm{q}, J=29.8 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-65.70(\mathrm{t}, J=$ $10.8 \mathrm{~Hz}, 3 \mathrm{~F}) \mathrm{ppm}$. MS (EI) m/z (\%) 261.1(100). HRMS (EI) Calcd for: $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}$: 261.0765; Found: 261.0766. IR (thin film): $v_{\max } 3065,2919,2224,1479,1445,1361$, $1260,1138,1077,911,813,764,657 \mathrm{~cm}^{-1}$.

2-(4,4,4-Trifluorobutyl)isoindoline-1,3-dione (4m). Freshly prepared CuI (28 mg, $0.15 \mathrm{mmol})$, Togni's reagent II ($474 \mathrm{mg}, 1.50 \mathrm{mmol}$) and anhydrous DMF (5.0 mL) were placed into an oven-dried Schlenk tube that is equipped with a stirring bar under Ar. Organozinc reagents $(0.5 \mathrm{mmol})$ was then added dropwise. The reaction was stirred at room temperature until the disappearance of Togni's reagent II (typically 20 min as monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy). The product was purified by flash chromatography on silica gel with pentane and isolated as a white solid in 49% yield $(63 \mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=$ $5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.21-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13}{ }^{3}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.2,134.1,131.9,126.7(\mathrm{q}, J=276.2 \mathrm{~Hz}), 123.4$, $36.7,31.5(\mathrm{q}, J=29.4 \mathrm{~Hz}), 21.5(\mathrm{q}, J=2.9 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl} 3$) δ -66.43 (t, $J=10.6 \mathrm{~Hz}, 3 \mathrm{~F})$.

Reference: Mizuta, S.; Verhoog, S.; Engle, K. M.; Khotavivattana, T.; O’Duill, M.; Wheelhouse, K.; Rassias, G.; Médebielle, M.; Gouverneur, V. J. Am. Chem. Soc. 2013, 135, 2505.

General Procedure for Preparation of Aryl Iodides

The procedure described for 5-iodo-2-(4-methoxyphenoxy) pyridine was applied with 4-methoxyphenol ($0.44 \mathrm{~g}, 3.5 \mathrm{mmol}$) 2-bromo-5-iodopyridine ($1.0 \mathrm{~g}, 3.5 \mathrm{mmol}$),
$\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.6 \mathrm{~g}, 8.0 \mathrm{mmol})$, and $\mathrm{DMF}(20 \mathrm{~mL})$ to give title compound as a white solid.

5-Iodo-2-(4-methoxyphenoxy)pyridine (1b). White solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}) $\delta 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.92(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.9,157.0,153.7,147.3,147.1,122.5(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 115.0,113.5,83.9$, 55.8 ppm . MS (EI) m/z (\%) 327.0 (100).

Reference: Krasovskiy, A.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 6040.

The procedure described for phenethyl 4-iodobenzoate was applied with 4-iodobenzoic acid ($2.0 \mathrm{~g}, 8.1 \mathrm{mmol}$), 2-phenylethanol ($1.1 \mathrm{~g}, 8.8 \mathrm{mmol}$), DMAP ($0.11 \mathrm{~g}, 0.88 \mathrm{mmol})$, and $\operatorname{EDCI}(1.5 \mathrm{~g}, 8.1 \mathrm{mmol})$ to give title compound as a white solid.

Henethyl 4-iodobenzoate (1c). White solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79$ (d, J $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.52(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2$ H), 3.07 (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,137.7,131.0$, 129.7, 129.0, 128.6, 126.7, 100.8, 65.7, 35.2 ppm. MS (EI) m/z (\%) 352.0, 104 (100).

2-(4-Iodophenyl)-2-methyl-1, 3-dioxolane (1d). White solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.74(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.3,137.5$,
127.6, 108.7, 93.8, 64.7, 27.7 ppm . MS (EI) m/z (\%) 290.0, 275.0 (100).

Reference: Jefferson, N,-W.; Wayland, M,-A. US 2011/0190489.A1.

To a flask, 4-iodophenol ($4.22 \mathrm{~g}, 19.2 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($13.32 \mathrm{~g}, 96.4 \mathrm{mmol}$), and 4-(bromomethyl)benzonitrile ($3.20 \mathrm{~g}, 16.0 \mathrm{mmol}$) were dissolved in 120 mL of acetone and the mixture was stirred under reflux for 14 h . After filtered, the mixture was concentrated in vacuo. The residue was dissolved in $30 \mathrm{~mL}^{\text {of }} \mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} x 3)$, and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residence was purified by flash column chromatography to yield the title compound as a white solid.

4-((4-Iodophenoxy)methyl)benzonitrile (1e). White solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.2,142.2$, 138.6, 132.6, 127.7, 118.2, 117.4, 112.0, 83.9, 69.1 ppm. MS (EI) m/z (\%) 335.0, 116.1 (100).

Mechanistic Experiments

a) Radical-clock experiment.

Freshly prepared CuI ($28 \mathrm{mg}, 0.15 \mathrm{mmol}$), Togni's reagent II ($474 \mathrm{mg}, 1.50 \mathrm{mmol}$) and anhydrous DMF (5.0 mL) were placed into an oven-dried Schlenk tube that is equipped with a stirring bar under Ar. Organozinc reagents (0.5 mmol) was then added dropwise. The reaction was stirred at room temperature until the disappearance of Togni's reagent II. The product was purified by flash chromatography on silica gel with pentane.

1-(Allyloxy)-2-(trifluoromethyl)benzene. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.08-5.97(\mathrm{~m}, 1 \mathrm{H})$, $5.46(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.26(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{dt}, J=4.7,1.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.43$ (s, 3 F). MS (EI) m/z (\%) 201.9 (100). HRMS (EI) Calcd for: $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}: 202.0605$; Found: 202.0602.
${ }^{19}$ F NMR Spectrum of 1-(allyloxy)-2-(trifluoromethyl)benzene

${ }^{1}$ H NMR Spectrum of 1-(allyloxy)-2-(trifluoromethyl)benzene

3-(2,2,2-Trifluoroethyl)-2,3-dihydrobenzofuran. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.19 (m, $J=14.4,2 H$), $6.90-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 1 \mathrm{H}), 4.33$ (dd, J $=9.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{tt}, J=9.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=9.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.20$ $(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.03(\mathrm{t}, J=10.9 \mathrm{~Hz}, 3 \mathrm{~F}) . \mathrm{MS}$ (EI) $\mathrm{m} / \mathrm{z}(\%) 201.9$ (100). HRMS (EI) Calcd for: $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}$: 202.0605; Found: 202.0606.

${ }^{19}$ F NMR Spectrum of 3-(2,2,2-trifluoroethyl)-2,3-dihydrobenzofuran.

${ }^{1}$ H NMR Spectrum of 3-(2,2,2-trifluoroethyl)-2,3-dihydrobenzofuran.

b) Radical Trap experiment.

Freshly prepared CuI ($6 \mathrm{mg}, 0.03 \mathrm{mmol}$), Togni's reagent II ($95 \mathrm{mg}, 0.30 \mathrm{mmol}$) and anhydrous DMF (1.0 mL) were placed into an oven-dried Schlenk tube that is
equipped with a stirring bar under Ar. Organozinc reagents (0.1 mmol) and 1.5 equivalents of TEMPO were then added. The reaction was stirred at room temperature until the disappearance of Togni's reagent II. The reaction was monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy.

Figure S1.The reaction was monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy using p-Fluorotoluene as an internal standard (it showed the formation of $\mathrm{CF}_{3} \mathrm{I}$ (resonated at $\delta=-13.97 \mathrm{ppm}$ in ${ }^{19} \mathrm{~F} \mathrm{NMR}$), trifluoromethylated TEMPO (resonated at $\delta=-55.35 \mathrm{ppm}$ in ${ }^{19} \mathrm{~F}$ NMR), trifluoromethylated biphenyl(resonated at $\delta=-62.12 \mathrm{ppm}$ in ${ }^{19} \mathrm{~F}$ NMR).
c) Stoichiometric reaction monitored by ${ }^{19}$ F NMR spectroscopy.

Freshly prepared CuI ($19 \mathrm{mg}, 0.1 \mathrm{mmol}$), Togni's reagent II ($95 \mathrm{mg}, 0.3 \mathrm{mmol}$) and anhydrous DMF (1.0 mL) were placed into an oven-dried Schlenk tube that is equipped with a stirring bar under Ar. A clear blue solution was formed within 1.0 min at room temperature upon. The reaction was monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy. Addition of 10 mL of diethyl ether precipitated a blue solid which was characterized to be bimetallic copper(II) species $\mathbf{8}$, as determined by X-ray diffraction of its single crystals. After the diethyl ether was removed under vacuum, the DMF solution of the reaction mixture was treated with 1.0 equivalent of 4-biphenyl zinc reagent. After 20 min , the peak at -30.5 ppm disappeared and a new peak at -62.4 ppm which corresponds to the trifluoromethylated biphenyl formed in 47% yield, as determined by ${ }^{19} \mathrm{~F}$ NMR spectroscopy (Fig. S3).

Figure S2.The reaction was monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy using p-Fluorotoluene as an internal standard (it showed the formation of $\mathrm{CF}_{3} \mathrm{I}$ (resonated at $\delta=-10.5 \mathrm{ppm}$ in ${ }^{19} \mathrm{~F} \mathrm{NMR}$), $\mathrm{CF}_{3} \mathrm{H}$ (resonated at $\delta=-79.5 \mathrm{ppm}$ in ${ }^{19} \mathrm{~F}$ NMR), unreacted reagent 2 and an unknown species 7 (resonated at $\delta=-30.5 \mathrm{ppm}$ in ${ }^{19} \mathrm{~F}$ NMR).

Figure S3. ${ }^{19}$ F NMR spectroscopy for reaction of the DMF solution of above solution after removing the copper(II) salts with aryl zinc reagent 2 after 20 min at room temperature, using p-Fluorotoluene as an internal standard.
d) Evidence supports that the chemical shift of ${ }^{19} \mathrm{~F}$ NMR spectroscopy of $\mathrm{CF}_{3} \mathrm{I}$ in a mixed THF/DMF solvent shifted to - $\mathbf{1 5 . 3 2} \mathbf{~ p p m}$.

To gain evidence that the peak at -15.32 ppm corresponds to the signal of $\mathrm{CF}_{3} \mathrm{I}$, we added a small amount of authentic $\mathrm{CF}_{3} \mathrm{I}$ to the reaction mixture and the mixture was monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy. It was found that the peak at -15.32 ppm increased sharply and no new peak was discovered.

Figure S4. ${ }^{19}$ F NMR analysis of the crude product using p-Fluorotoluene as an internal standard.

Figure S5. ${ }^{19} \mathrm{~F}$ NMR spectroscopy after the addition of a small amount of $\mathrm{CF}_{3} \mathrm{I}$.
${ }^{1}$ H NMR Spectrum of 4-(trifluoromethyl)-1,1'-biphenyl (4a)

${ }^{19}$ F NMR Spectrum of 4-(trifluoromethyl)-1,1'-biphenyl (4a)

${ }^{13}$ C NMR Spectrum of 4-(trifluoromethyl)-1,1'-biphenyl (4a)

${ }^{1}$ H NMR Spectrum of 1-(benzyloxy)-4-(trifluoromethyl)benzene (4b)

${ }^{19}$ F NMR Spectrum of 1-(benzyloxy)-4-(trifluoromethyl)benzene (4b)

${ }^{13}$ C NMR Spectrum of 1-(benzyloxy)-4-(trifluoromethyl)benzene (4b)

${ }^{1} \mathrm{H}$ NMR Spectrum of 4-((4-(trifluoromethyl)phenoxy)methyl)benzonitrile(4c)

${ }^{19}$ F NMR Spectrum of 4-((4-(trifluoromethyl)phenoxy)methyl)benzonitrile(4 c)

${ }^{13}$ C NMR Spectrum of 4-((4-(trifluoromethyl)phenoxy)methyl)benzonitrile(4c)

${ }^{1}$ H NMR Spectrum of phenethyl 4-(trifluoromethyl)benzoate (4d)

${ }^{19}$ F NMR Spectrum of phenethyl 4-(trifluoromethyl)benzoate (4d)

${ }^{13}$ C NMR Spectrum of phenethyl 4-(trifluoromethyl)benzoate (4d)

${ }^{1} \mathrm{H}$ NMR Spectrum of piperidin-1-yl(4-(trifluoromethyl)phenyl)methanone (4e)

$\stackrel{n}{\underset{1}{m}} \stackrel{\text { n }}{m}$
$\frac{\bar{k}}{1} \frac{\pi}{1}$

${ }^{13}$ C NMR Spectrum of piperidin-1-yl(4-(trifluoromethyl)phenyl)methanone (4e)

${ }^{19}$ F NMR Spectrum of piperidin-1-yl(4-(trifluoromethyl)phenyl)methanone (4e)

\qquad
${ }^{1}$ H NMR Spectrum of 2-methyl-2-(4-(trifluoromethyl)phenyl)-1,3-dioxolane(4f)

${ }^{19}$ F NMR Spectrum of 2-methyl-2-(4-(trifluoromethyl)phenyl)-1,3-dioxolane(4f)

${ }^{13}$ C NMR Spectrum of 2-methyl-2-(4-(trifluoromethyl)phenyl)-1,3-dioxolane(4f)

${ }^{1}$ H NMR Spectrum of phenethyl2-(4-methoxyphenoxy)-5-(trifluoromethyl)pyridine $(4 \mathrm{~g})$

${ }^{19}$ F NMR Spectrum of phenethyl2-(4-methoxyphenoxy)-5-(trifluoromethyl)pyridine (4g)

${ }^{13}$ C NMR Spectrum of phenethyl2-(4-methoxyphenoxy)-5-(trifluoromethyl)pyridine(4 g)

${ }^{1}$ H NMR Spectrum of 3-(trifluoromethyl)quinoline (4h)

${ }^{19}$ F NMR Spectrum of 3-(trifluoromethyl)quinoline (4h)

${ }^{13}$ C NMR Spectrum of 3-(trifluoromethyl)quinoline (4h)

${ }^{1}$ H NMR Spectrum of 8-(trifluoromethyl)quinoline (4i)

${ }^{19}$ F NMR Spectrum of 8-(trifluoromethyl)quinoline (4i)

${ }^{13}$ C NMR Spectrum of 8-(trifluoromethyl)quinoline (4i)

${ }^{19}$ F NMR Spectrum of (3,3,3-Trifluoroprop-1-ene-1,1,2-triyl)tribenzene (4j)

${ }^{1}$ H NMR Spectrum of methyl4'-(2,2,2-trifluoroethyl)-[1,1'-biphenyl]-2-carboxylate (4k)

${ }^{19}$ F NMR Spectrum of methyl4'-(2,2,2-trifluoroethyl)-[1,1'-biphenyl]-2-carboxylate (4k)

${ }^{13}$ C NMR Spectrum of methyl4'-(2,2,2-trifluoroethyl)-[1,1'-biphenyl]-2-carboxylate (4k)

${ }^{1}$ H NMR Spectrum of 4'-(2,2,2-trifluoroethyl)-[1,1'-biphenyl]-2-carbonitrile (41)

${ }^{19}$ F NMR Spectrum of 4'-(2,2,2-trifluoroethyl)-[1,1'-biphenyl]-2-carbonitrile (4I)

${ }^{13} \mathrm{C}$ NMR Spectrum of 4'-(2,2,2-trifluoroethyl)-[1,1'-biphenyl]-2-carbonitrile (4I)

${ }^{1} \mathrm{H}$ NMR Spectrum of 2-(4,4,4-trifluorobutyl)isoindoline-1,3-dione (4m)

${ }^{19}$ F NMR Spectrum of 2-(4,4,4-trifluorobutyl)isoindoline-1,3-dione (4m)

${ }^{13}$ C NMR Spectrum of 2-(4,4,4-trifluorobutyl)isoindoline-1,3-dione (4m)

${ }^{1}$ H NMR Spectrum of 5-iodo-2-(4-methoxyphenoxy) pyridine (1b)

${ }^{13}$ C NMR Spectrum of 5-iodo-2-(4-methoxyphenoxy)pyridine (1b)

${ }^{1}$ H NMR Spectrum of phenethyl 4-iodobenzoate (1c)

${ }^{13} \mathrm{C}$ NMR Spectrum of phenethyl 4-iodobenzoate (1c)

${ }^{1}$ H NMR Spectrum of phenethyl 2-(4-iodophenyl)-2-methyl-1,3-dioxolane (1d)

${ }^{13}$ C NMR Spectrum of phenethyl 2-(4-iodophenyl)-2-methyl-1,3-dioxolane (1d)

${ }^{1} \mathrm{H}$ NMR Spectrum of phenethyl 4-((4-iodophenoxy)methyl)benzonitrile (1e)

${ }^{13}$ C NMR Spectrum of phenethyl 4-((4-iodophenoxy)methyl)benzonitrile (1e)

Single crystals of bimetallic copper(II) species $\mathbf{8}$

Table 1. Crystal data and structure refinement for cd214505.

Identification code	cd214505	
Empirical formula	C36 H32 Cu2 I4 O10	
Formula weight	1259.29	
Temperature	293(2) K	
Wavelength	0.71073 A	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	$\mathrm{a}=8.6433(12) \AA$	$\alpha=104.470(3)^{\circ}$.
	$\mathrm{b}=11.2513(15) \AA$	$\beta=91.909(3)^{\circ}$.
	$\mathrm{c}=21.811(3) \AA$	$\gamma=93.409(3)^{\circ}$.
Volume	2047.7(5) \AA^{3}	
Z	2	
Density (calculated)	$2.042 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$4.106 \mathrm{~mm}^{-1}$	
F(000)	1196	
Crystal size	$0.211 \times 0.134 \times 0.112 \mathrm{~mm}^{3}$	

Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
0.965 to 26.000°.
$-10<=\mathrm{h}<=10,-9<=\mathrm{k}<=13,-26<=1<=26$
12508
$8017[\mathrm{R}(\mathrm{int})=0.0295]$
99.7 \%

Semi-empirical from equivalents
0.7457 and 0.3852

Full-matrix least-squares on F^{2}
8017 / 12 / 487
1.037
$\mathrm{R} 1=0.0535, \mathrm{wR} 2=0.1552$
$\mathrm{R} 1=0.0693, \mathrm{wR} 2=0.1691$
n/a
1.083 and -1.463 e. \AA^{-3}

Table 2. Bond lengths [\AA] $]$ and angles $\left[{ }^{\circ}\right]$ for cd 214505.

$\mathrm{Cu}(1)-\mathrm{O}(2)$	$1.951(4)$
$\mathrm{Cu}(1)-\mathrm{O}(1) \# 1$	$1.951(4)$
$\mathrm{Cu}(1)-\mathrm{O}(3) \# 1$	$1.952(4)$
$\mathrm{Cu}(1)-\mathrm{O}(4)$	$1.968(4)$
$\mathrm{Cu}(1)-\mathrm{O}(5)$	$2.172(4)$
$\mathrm{Cu}(1)-\mathrm{Cu}(1) \# 1$	$2.6171(12)$
$\mathrm{Cu}(2)-\mathrm{O}(9) \# 2$	$1.958(4)$
$\mathrm{Cu}(2)-\mathrm{O}(8)$	$1.961(4)$
$\mathrm{Cu}(2)-\mathrm{O}(7) \# 2$	$1.965(4)$
$\mathrm{Cu}(2)-\mathrm{O}(6)$	$1.966(4)$
$\mathrm{Cu}(2)-\mathrm{O}(10)$	$2.138(4)$
$\mathrm{Cu}(2)-\mathrm{Cu}(2) \# 2$	$2.6129(12)$
$\mathrm{I}(1)-\mathrm{C}(7)$	$2.077(7)$
$\mathrm{I}(3)-\mathrm{C}(25)$	$2.075(6)$
$\mathrm{I}(2)-\mathrm{C}(14)$	$2.070(7)$
$\mathrm{I}(4)-\mathrm{C}(32)$	$2.123(7)$
$\mathrm{I}\left(2^{\prime}\right)-\mathrm{C}(14)$	$2.139(8)$
$\left.\mathrm{I}(4)^{\prime}\right)-\mathrm{C}(32)$	$2.130(7)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.242(7)$
$\mathrm{O}(1)-\mathrm{Cu}(1) \# 1$	$1.951(4)$
$\mathrm{O}(2)-\mathrm{C}(1)$	$1.262(7)$
$\mathrm{O}(3)-\mathrm{C}(8)$	$1.262(7)$

$\mathrm{O}(3)-\mathrm{Cu}(1) \# 1$	1.952(4)
$\mathrm{O}(4)-\mathrm{C}(8)$	1.247(7)
$\mathrm{O}(5)-\mathrm{C}(18)$	1.435(9)
$\mathrm{O}(5)-\mathrm{C}(15)$	1.440(9)
$\mathrm{O}(6)-\mathrm{C}(19)$	1.236(7)
$\mathrm{O}(7)-\mathrm{C}(19)$	1.240(7)
$\mathrm{O}(7)-\mathrm{Cu}(2) \# 2$	1.965(4)
$\mathrm{O}(8)-\mathrm{C}(26)$	1.247(7)
$\mathrm{O}(9)-\mathrm{C}(26)$	1.243(7)
$\mathrm{O}(9)-\mathrm{Cu}(2) \# 2$	1.958(4)
$\mathrm{O}(10)-\mathrm{C}(36)$	$1.405(10)$
$\mathrm{O}(10)-\mathrm{C}(33)$	1.427(9)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.514(8)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.367(9)
$\mathrm{C}(2)-\mathrm{C}(7)$	1.397(9)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.382(10)
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9300
$\mathrm{C}(4)-\mathrm{C}(5)$	1.341(13)
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9300
$\mathrm{C}(5)-\mathrm{C}(6)$	1.393 (13)
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9300
$\mathrm{C}(6)-\mathrm{C}(7)$	1.394(10)
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9300
C(8)-C(9)	1.501(8)
$\mathrm{C}(9)-\mathrm{C}(14)$	1.377(9)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.384(9)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.374(10)
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9300
$\mathrm{C}(11)-\mathrm{C}(12)$	1.352(13)
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9300
$\mathrm{C}(12)-\mathrm{C}(13)$	1.345 (13)
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9300
$\mathrm{C}(13)-\mathrm{C}(14)$	1.401(10)
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9300
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.495(16)$
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9700
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9700
$\mathrm{C}(16)-\mathrm{C}(17)$	1.457(18)

$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9700
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9700
$\mathrm{C}(17)-\mathrm{C}(18)$	1.478(12)
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9700
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9700
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9700
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9700
C(19)-C(20)	1.513(7)
$\mathrm{C}(20)-\mathrm{C}(25)$	1.383(8)
$\mathrm{C}(20)-\mathrm{C}(21)$	1.402(9)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.374(10)
$\mathrm{C}(21)-\mathrm{H}(21)$	0.9300
$\mathrm{C}(22)-\mathrm{C}(23)$	1.366 (12)
$\mathrm{C}(22)-\mathrm{H}(22)$	0.9300
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.360(12)$
$\mathrm{C}(23)-\mathrm{H}(23)$	0.9300
$\mathrm{C}(24)$ - C (25)	1.403(10)
$\mathrm{C}(24)-\mathrm{H}(24)$	0.9300
$\mathrm{C}(26)-\mathrm{C}(27)$	1.512(8)
$\mathrm{C}(27)-\mathrm{C}(28)$	1.364(9)
$\mathrm{C}(27)-\mathrm{C}(32)$	1.380(9)
$\mathrm{C}(28)-\mathrm{C}(29)$	1.366 (10)
$\mathrm{C}(28)-\mathrm{H}(28)$	0.9300
$\mathrm{C}(29)$-C(30)	$1.392(11)$
$\mathrm{C}(29)-\mathrm{H}(29)$	0.9300
$\mathrm{C}(30)-\mathrm{C}(31)$	1.350(11)
$\mathrm{C}(30)-\mathrm{H}(30)$	0.9300
$\mathrm{C}(31)-\mathrm{C}(32)$	1.388(10)
$\mathrm{C}(31)-\mathrm{H}(31)$	0.9300
$\mathrm{C}(33)-\mathrm{C}(34)$	1.470(11)
$\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~A})$	0.9700
C(33)-H(33B)	0.9700
$\mathrm{C}(34)-\mathrm{C}(35)$	1.478(13)
$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A})$	0.9700
$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	0.9700
$\mathrm{C}(35)-\mathrm{C}(36)$	1.467(14)
$\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~A})$	0.9700
C(35)-H(35B)	0.9700

$\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~A})$	0.9700
C(36)-H(36B)	0.9700
$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{O}(1) \# 1$	168.89(17)
$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{O}(3) \# 1$	90.4(2)
$\mathrm{O}(1) \# 1-\mathrm{Cu}(1)-\mathrm{O}(3) \# 1$	89.2(2)
$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{O}(4)$	89.41(19)
$\mathrm{O}(1) \# 1-\mathrm{Cu}(1)-\mathrm{O}(4)$	88.86(19)
$\mathrm{O}(3) \# 1-\mathrm{Cu}(1)-\mathrm{O}(4)$	168.72(17)
$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{O}(5)$	96.34(18)
$\mathrm{O}(1) \# 1-\mathrm{Cu}(1)-\mathrm{O}(5)$	94.72(18)
$\mathrm{O}(3) \# 1-\mathrm{Cu}(1)-\mathrm{O}(5)$	97.46(17)
$\mathrm{O}(4)-\mathrm{Cu}(1)-\mathrm{O}(5)$	93.77(17)
$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{Cu}(1) \# 1$	85.14(12)
$\mathrm{O}(1) \# 1-\mathrm{Cu}(1)-\mathrm{Cu}(1) \# 1$	83.76(12)
$\mathrm{O}(3) \# 1-\mathrm{Cu}(1)-\mathrm{Cu}(1) \# 1$	85.88(12)
$\mathrm{O}(4)-\mathrm{Cu}(1)-\mathrm{Cu}(1) \# 1$	82.87(12)
$\mathrm{O}(5)-\mathrm{Cu}(1)-\mathrm{Cu}(1) \# 1$	176.32(12)
$\mathrm{O}(9) \# 2-\mathrm{Cu}(2)-\mathrm{O}(8)$	168.14(17)
$\mathrm{O}(9) \# 2-\mathrm{Cu}(2)-\mathrm{O}(7) \# 2$	88.2(2)
$\mathrm{O}(8)-\mathrm{Cu}(2)-\mathrm{O}(7) \# 2$	89.31(19)
$\mathrm{O}(9) \# 2-\mathrm{Cu}(2)-\mathrm{O}(6)$	90.5(2)
$\mathrm{O}(8)-\mathrm{Cu}(2)-\mathrm{O}(6)$	89.58(19)
$\mathrm{O}(7) \# 2-\mathrm{Cu}(2)-\mathrm{O}(6)$	168.47(16)
$\mathrm{O}(9) \# 2-\mathrm{Cu}(2)-\mathrm{O}(10)$	95.93(19)
$\mathrm{O}(8)-\mathrm{Cu}(2)-\mathrm{O}(10)$	95.85(19)
$\mathrm{O}(7) \# 2-\mathrm{Cu}(2)-\mathrm{O}(10)$	95.46(17)
$\mathrm{O}(6)-\mathrm{Cu}(2)-\mathrm{O}(10)$	96.07(18)
$\mathrm{O}(9) \# 2-\mathrm{Cu}(2)-\mathrm{Cu}(2) \# 2$	83.64(12)
$\mathrm{O}(8)-\mathrm{Cu}(2)-\mathrm{Cu}(2) \# 2$	84.55(12)
$\mathrm{O}(7) \# 2-\mathrm{Cu}(2)-\mathrm{Cu}(2) \# 2$	83.78(11)
$\mathrm{O}(6)-\mathrm{Cu}(2)-\mathrm{Cu}(2) \# 2$	84.69(11)
$\mathrm{O}(10)-\mathrm{Cu}(2)-\mathrm{Cu}(2) \# 2$	179.14(13)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Cu}(1) \# 1$	123.1(4)
$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{Cu}(1)$	121.0(4)
$\mathrm{C}(8)-\mathrm{O}(3)-\mathrm{Cu}(1) \# 1$	121.2(4)
$\mathrm{C}(8)-\mathrm{O}(4)-\mathrm{Cu}(1)$	124.3(4)
$\mathrm{C}(18)-\mathrm{O}(5)-\mathrm{C}(15)$	108.3(6)

$\mathrm{C}(18)-\mathrm{O}(5)-\mathrm{Cu}(1)$	122.1(4)
$\mathrm{C}(15)-\mathrm{O}(5)-\mathrm{Cu}(1)$	121.8(5)
$\mathrm{C}(19)-\mathrm{O}(6)-\mathrm{Cu}(2)$	121.5(4)
$\mathrm{C}(19)-\mathrm{O}(7)-\mathrm{Cu}(2) \# 2$	122.6(4)
$\mathrm{C}(26)-\mathrm{O}(8)-\mathrm{Cu}(2)$	122.7(4)
$\mathrm{C}(26)-\mathrm{O}(9)-\mathrm{Cu}(2) \# 2$	124.0(4)
$\mathrm{C}(36)-\mathrm{O}(10)-\mathrm{C}(33)$	107.6(6)
$\mathrm{C}(36)-\mathrm{O}(10)-\mathrm{Cu}(2)$	126.6(5)
$\mathrm{C}(33)-\mathrm{O}(10)-\mathrm{Cu}(2)$	124.3(4)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	126.9(6)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	115.4(5)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	117.6(5)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	118.8(6)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	116.9(6)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(1)$	124.3(5)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	121.3(7)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	119.4
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	119.4
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	120.1(7)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	120.0
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	120.0
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.0(7)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	119.5
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	119.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	119.0(8)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	120.5
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	120.5
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	119.8(6)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{I}(1)$	115.9(5)
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{I}(1)$	124.1(5)
$\mathrm{O}(4)-\mathrm{C}(8)-\mathrm{O}(3)$	125.7(5)
$\mathrm{O}(4)-\mathrm{C}(8)-\mathrm{C}(9)$	117.9(5)
$\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{C}(9)$	116.3(5)
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)$	117.7(6)
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(8)$	124.7(5)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	117.5(6)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	121.2(8)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	119.4

$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	119.4
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	120.3(8)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	119.8
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	119.8
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	120.0(7)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	120.0
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	120.0
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120.7(8)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	119.7
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	119.7
$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	119.9(7)
$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{I}(2)$	126.5(4)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{I}(2)$	113.3(6)
$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{I}\left(2^{\prime}\right)$	120.3(5)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{I}\left(2^{\prime}\right)$	118.4(6)
$\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{C}(16)$	105.8(9)
$\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	110.6
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	110.6
$\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	110.6
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	110.6
$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	108.7
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	104.8(10)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	110.8
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	110.8
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	110.8
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	110.8
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	108.9
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	104.5(9)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	110.9
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	110.9
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	110.9
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	110.9
$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	108.9
$\mathrm{O}(5)-\mathrm{C}(18)-\mathrm{C}(17)$	107.6(7)
$\mathrm{O}(5)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	110.2
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	110.2
$\mathrm{O}(5)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	110.2
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	110.2

$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	108.5
$\mathrm{O}(6)-\mathrm{C}(19)-\mathrm{O}(7)$	127.2(5)
$\mathrm{O}(6)-\mathrm{C}(19)-\mathrm{C}(20)$	117.6(5)
$\mathrm{O}(7)-\mathrm{C}(19)-\mathrm{C}(20)$	115.1(5)
$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{C}(21)$	118.7(5)
$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{C}(19)$	124.3(5)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	116.9(5)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	120.4(6)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21)$	119.8
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	119.8
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	119.8(7)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22)$	120.1
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	120.1
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	121.5(7)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23)$	119.2
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23)$	119.2
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	119.4(7)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24)$	120.3
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24)$	120.3
$\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(24)$	120.1(6)
$\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{I}(3)$	121.6(5)
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{I}(3)$	118.3(5)
$\mathrm{O}(9)-\mathrm{C}(26)-\mathrm{O}(8)$	125.1(5)
$\mathrm{O}(9)-\mathrm{C}(26)-\mathrm{C}(27)$	116.7(5)
$\mathrm{O}(8)-\mathrm{C}(26)-\mathrm{C}(27)$	118.2(5)
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(32)$	117.4(6)
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$	116.9(5)
$\mathrm{C}(32)-\mathrm{C}(27)-\mathrm{C}(26)$	125.7(5)
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	123.2(7)
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{H}(28)$	118.4
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{H}(28)$	118.4
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	118.8(7)
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{H}(29)$	120.6
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{H}(29)$	120.6
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(29)$	118.7(6)
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{H}(30)$	120.7
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{H}(30)$	120.7
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	121.7(7)

$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31)$	119.1
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{H}(31)$	119.1
$\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{C}(31)$	119.8(7)
$\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{I}(4)$	124.9(5)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{I}(4)$	114.3(6)
$\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{I}\left(4^{\prime}\right)$	123.1(5)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{I}\left(4^{\prime}\right)$	113.4(6)
$\mathrm{O}(10)-\mathrm{C}(33)-\mathrm{C}(34)$	107.2(7)
$\mathrm{O}(10)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~A})$	110.3
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~A})$	110.3
$\mathrm{O}(10)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	110.3
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	110.3
$\mathrm{H}(33 \mathrm{~A})-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	108.5
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	106.2(7)
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A})$	110.5
$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A})$	110.5
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	110.5
$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	110.5
$\mathrm{H}(34 \mathrm{~A})-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	108.7
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(34)$	102.8(8)
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~A})$	111.2
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~A})$	111.2
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~B})$	111.2
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~B})$	111.2
$\mathrm{H}(35 \mathrm{~A})-\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~B})$	109.1
$\mathrm{O}(10)-\mathrm{C}(36)-\mathrm{C}(35)$	107.3(8)
$\mathrm{O}(10)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~A})$	110.3
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~A})$	110.3
$\mathrm{O}(10)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	110.3
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	110.3
$\mathrm{H}(36 \mathrm{~A})-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	108.5

Symmetry transformations used to generate equivalent atoms:
$\# 1-x+1,-y+1,-z+2 \quad \# 2-x,-y+1,-z+1$

Table 3.Torsion angles [${ }^{\circ}$] for cd214505.

$\mathrm{Cu}(1) \# 1-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	-176.0(3)
$\mathrm{Cu}(1)-\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	-1.0(8)
$\mathrm{Cu}(1)-\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	176.5(4)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	36.1(7)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-141.7(6)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	-145.5(6)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	36.7(8)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-1.6(10)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	176.9(6)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	2.9(11)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-0.8(12)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-2.5(12)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	3.7(10)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{I}(1)$	179.0(6)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	-1.7(9)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	179.9(6)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{I}(1)$	-176.6(5)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{I}(1)$	5.0(8)
$\mathrm{Cu}(1)-\mathrm{O}(4)-\mathrm{C}(8)-\mathrm{O}(3)$	3.0(9)
$\mathrm{Cu}(1)-\mathrm{O}(4)-\mathrm{C}(8)-\mathrm{C}(9)$	-179.7(4)
$\mathrm{Cu}(1) \# 1-\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{O}(4)$	-1.8(9)
$\mathrm{Cu}(1) \# 1-\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{C}(9)$	-179.2(4)
$\mathrm{O}(4)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)$	29.9(9)
$\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)$	-152.5(6)
$\mathrm{O}(4)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-145.9(6)
$\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	31.8(8)
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-0.3(11)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	175.7(8)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-2.4(15)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	4.1(16)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-3.1(15)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	1.4(10)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	-174.4(6)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{I}(2)$	175.8(5)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{I}(2)$	0.1(10)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{I}\left(2^{\prime}\right)$	-165.2(5)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{I}\left(2^{\prime}\right)$	19.0(9)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	0.3(12)

$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{I}(2)$	-174.8(7)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{I}\left(2^{\prime}\right)$	167.2(7)
$\mathrm{C}(18)-\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{C}(16)$	13.4(11)
$\mathrm{Cu}(1)-\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{C}(16)$	-136.2(8)
$\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	-27.2(14)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	30.0(15)
$\mathrm{C}(15)-\mathrm{O}(5)-\mathrm{C}(18)-\mathrm{C}(17)$	5.3(10)
$\mathrm{Cu}(1)-\mathrm{O}(5)-\mathrm{C}(18)-\mathrm{C}(17)$	154.9(7)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{O}(5)$	-22.4(14)
$\mathrm{Cu}(2)-\mathrm{O}(6)-\mathrm{C}(19)-\mathrm{O}(7)$	5.0(8)
$\mathrm{Cu}(2)-\mathrm{O}(6)-\mathrm{C}(19)-\mathrm{C}(20)$	-176.6(4)
$\mathrm{Cu}(2) \# 2-\mathrm{O}(7)-\mathrm{C}(19)-\mathrm{O}(6)$	-5.1(8)
$\mathrm{Cu}(2) \# 2-\mathrm{O}(7)-\mathrm{C}(19)-\mathrm{C}(20)$	176.4(4)
$\mathrm{O}(6)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(25)$	55.9(8)
$\mathrm{O}(7)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(25)$	-125.5(6)
$\mathrm{O}(6)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	-125.8(6)
$\mathrm{O}(7)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	52.9(7)
$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	-1.3(10)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	-179.7(7)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	1.9(13)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	-2.0(15)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	1.5(14)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(24)$	0.8(10)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(24)$	179.1(6)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{I}(3)$	-176.2(5)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{I}(3)$	2.1(8)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(20)$	-0.9(12)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{I}(3)$	176.2(7)
$\mathrm{Cu}(2) \# 2-\mathrm{O}(9)-\mathrm{C}(26)-\mathrm{O}(8)$	-0.3(9)
$\mathrm{Cu}(2) \# 2-\mathrm{O}(9)-\mathrm{C}(26)-\mathrm{C}(27)$	178.8(4)
$\mathrm{Cu}(2)-\mathrm{O}(8)-\mathrm{C}(26)-\mathrm{O}(9)$	-1.4(8)
$\mathrm{Cu}(2)-\mathrm{O}(8)-\mathrm{C}(26)-\mathrm{C}(27)$	179.5(4)
$\mathrm{O}(9)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	1.6(8)
$\mathrm{O}(8)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	-179.2(6)
$\mathrm{O}(9)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(32)$	-178.5(7)
$\mathrm{O}(8)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(32)$	0.7(10)
$\mathrm{C}(32)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	3.7(11)
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	-176.4(7)

$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	$-2.3(12)$
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	$2.4(14)$
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	$-4.2(15)$
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{C}(31)$	$-5.2(12)$
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{C}(31)$	$174.9(8)$
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{I}(4)$	$163.2(6)$
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{I}(4)$	$-16.7(11)$
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{I}\left(4^{\prime}\right)$	$-162.2(6)$
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{I}\left(4^{\prime}\right)$	$17.9(11)$
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(27)$	$5.7(15)$
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{I}(4)$	$-163.9(8)$
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{I}\left(4^{\prime}\right)$	$164.7(8)$
$\mathrm{C}(36)-\mathrm{O}(10)-\mathrm{C}(33)-\mathrm{C}(34)$	$10.2(13)$
$\mathrm{Cu}(2)-\mathrm{O}(10)-\mathrm{C}(33)-\mathrm{C}(34)$	$-156.7(7)$
$\mathrm{O}(10)-\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$8.9(12)$
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	$-23.5(13)$
$\mathrm{C}(33)-\mathrm{O}(10)-\mathrm{C}(36)-\mathrm{C}(35)$	$-25.8(14)$
$\mathrm{Cu}(2)-\mathrm{O}(10)-\mathrm{C}(36)-\mathrm{C}(35)$	$140.7(7)$
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{O}(10)$	$30.4(14)$

Symmetry transformations used to generate equivalent atoms:

```
#1 -x+1,-y+1,-z+2 #2 -x,-y+1,-z+1
```

