Genetic incorporation of D-amino acids into green fluorescent protein based on polysubstrate specificity

Hairong Ma^{1,2}, Nan Liu^{1,2} Shaobo Shi¹, Shuzhen Wang¹ and Yijun Chen¹

¹State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China

PharmaceuticalUniversity

24 Tongjia Street, Nanjing, Jiangsu Province, 210009, People's Republic of China

² These authors contributed equally to this work.

Correspondence and requests for materials should be addressed to Y.C.

(email: yjchen@cpu.edu.cn).

Mutant	Calculated ^a	Observed ^b	Sequence
	(m/z)	(m/z)	
GFPuv	2062.8650	2062.9690	MGSSHHHHHHSQDPNSMSK°
S18 ^D F	2122.9010	2123.0957	MGSSHHHHHHSQDPNSM <u>^DF</u> K ^c
S18 ^D N	2073.8805	2073.9888	MGSSHHHHHHSQDPNSM <u>^DN</u> K ^c
S18 ^D M	2122.8679	2123.0171	MGSSHHHHHHSQDPNSM ^D MK°
S18 ^D R	2003.8386	ND^d	MGSSHHHHHHSQDPNSMR
	2115.9387	2115.9658	MGSSHHHHHHSQDPNSM ^D <u>R</u> K°
S18 ^D P	2056.8903	2055.9924	MGSSHHHHHHSQDPNSM ^D PK°
S18 ^D A	2177.9101	2176.4929	MGSSHHHHHHSQDPNSM ^D AK ^c
S18 ^D I	2132.2548	2132.0412	MGSSHHHHHHSQDPNSM <u>DI</u> K°
S18 ^D V	2223.3874	2224.1098	MGSSHHHHHHSQDPNSM <u>^DV</u> K ^c
Y66 ^D F	2383.8350	2383.1250	LPVPWPTLVTTFS <u>^DF</u> GVQCFSR ^c

Supplementary Table 1. MALDI-TOF-MS analysis of peptide fragments

a. Calculated mass for peptide fragment incorporated a D-amino acid.

b. Determined by MALDI-TOF-MS.

c. D-amino acid in the peptide fragment is underlined.

d. Undetectable.

Supplementary Table 2. Primers used for the mutagenesis

Primer	Nucleotide sequence $(5' - 3')$	Gene product
MGU101(F ^a)	GAATTCGATGAGTAAAGGAGAAGAACTTTTC	GFPuv
MGU102(R ^b)	AAGCTTATTTGTAGAGCTCATCCATGC	
MGU103(F ^a)	GAATTCGATGTAGAAAGGAGAAGAACTTTTC	GFPuv-18TAG ^c
MGU104 (F ^a)	ACTACTTTCTCTTTTGGTGTT	GFPuv-Y66F
MGU105 (R ^b)	ACCAAAAGAGAAAGTAGTGACAAG	
MGU106 (F ^a)	CTACTTTCGCCTAGGGTGTTCAAT	GFPuv-Y66TAG
MGU107 (R ^b)	TTGAACACCCTAGGCGAAAGTAGT	
MGU110 (F ^a)	CATATGTAACGCCGTTATACGTTGTT	pCNFRS with NdeI & PstI
MGU111 (R ^b)	GACGTCAAAAGCACGCAAACTCAATA	

a. Forward primer

b. Reverse primer

c. GFPuv-18TAG mutant gene was amplified using primer MGU103 as a forward primer and MGU102 as a reverse

primer.

a

c

e

Mass (m/z)

g

i

Supplementary Figure 1. MALDI-TOF/MS analysis of purified mutants containing D-amino acid at residue 18 after tryptic digestion. (a) Wild-type GFPuv; (b) GFPuv-S18^DF; (c) GFPuv-S18^DN; (d) GFPuv-S18^DM; (e) GFPuv-S18^DR; (f) GFPuv-S18^DP; (g) GFPuv-S18^DA; (h) GFPuv-S18^DV; (i) GFPuv-Y66^DF.

Supplementary Figure 2. Effects of D-Phe on the growth of engineered *E. coli* cells. The engineered *E. coli* containing pCNFRSII-tRNA and pET-GFPY66TAG grew in M9 media supplemented with 0, 1, 2, 3 4, 5 mM D-Phe, and then induced by 1 mM IPTG, 0.2% arabinose at 30°C for 30 hours. The OD_{600} value of *E. coli* suspension was determined by spectrophotometer every 2 h over a period of 36 h (n=3).

Supplementary Figure 3. Ramachandran plots of GFPuv-Y66F and GFPuv-Y66^DF models. A: GFPuv-Y66F;

GFPuv-Y66^DF.

Supplementary Figure 4. The VERIFY-3D scores of model structures. (a), Wild-type; (b), GFPuv-Y66F and (c)

GFPuv-Y66^DF.

Supplementary Figure 5. Comparison of the interactions between the fluorophore and surrounding amino acids. Side chains are labeled with one-letter code for amino acid and the number of residue in yellow. Probable hydrogen bonds are shown as dotted lines labeled with the distance between the heteroatoms in angstroms. (a) Amino acid side chains in the immediate vicinity of the fluorophore forming residues S65-F66-G67 of GFP-Y66F mutant. Fluorophore is highlighted in cyan. (b) Amino acid side chains in the immediate vicinity of the fluorophore is highlighted in Magentas. Compare to GFPuv-Y66F, the hydrogen bond between C-O in Gly67 and -NH₂ in Asn121 in GFPuv-Y66^pF disappeared, and Gly67 turned to Val68 forming a hydrogen bond. Additionally, the carbonyl group in imidazolinone interacted with both Arg96 and Gln69 in GFPuv-Y66^pF, in which additional binding creates a more stable structure of fluorophore.