Supporting Information (SI)

Reduction degree and property study of graphene nanosheets prepared with

different reducing agents and their applicability of being a carrier of

Ru(phen)₃Cl₂ luminescent sensor for DNA detection

Hongjuan Li, Jia Wen, Ruijin Yu, Caihui Bai, Yongqian Xu, Shiguo Sun*

College of Science, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China

Fig. S1 The structures of Ru(phen)₃Cl₂.

Fig. S2 C1s XPS spectra of the GNS samples and $GNS/Ru(phen)_3Cl_2$ (Ru). Inset shows the magnification of the Ru3d XPS spectra.

Fig. S3 UV-vis absorption spectra of the GNS samples and GNS/Ru(phen)₃Cl₂ (Ru).

Fig. S4 Luminescence response of the Ru(phen)₃Cl₂ sensor upon addition of different concentration of CT DNA in the presence of a certain concentration of GNS (6.9 μ g/mL GNS-H, 5.6 μ g/mL GNS-U, 5.3 μ g/mL GNS-G), Ex=464 nm.

Fig. S5 Optical image of (a) 0.49 μ M Ru(phen)₃Cl₂ (Ru); (b) Ru+5.3 μ g/mL GNS-G; (c) Ru+6.9 μ g/mL GNS-H; (d) Ru+5.6 μ g/mL GNS-U; (e) Ru+5.3 μ g/mL GNS-G+40.3 μ g/mL DNA; (f) Ru+6.9 μ g/mL GNS-H +16.8 μ g/mL DNA; (g) Ru+5.6 μ g/mL GNS-U +10.7 μ g/mL DNA. All the photos were taken under a hand-held UV lamp.