Supporting information for

Construction of Semi-Fluorinated Amphiphilic Graft Copolymer Bearing Poly(2-methyl-1,4- bistrifluorovinyloxybenzene) Backbone and Poly(ethylene glycol) Side Chains via the Grafting-Onto Strategy

Guolin Lu,^{a,#} Hao Liu,^{a,#} Haifeng Gao,^{b,*} Chun Feng,^{a,*} Yongjun Li,^a Xiaoyu

Huang^{a,*}

^a Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences,
345 Lingling Road, Shanghai 200032, People's Republic of China

^b Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame,

IN 46556-5670, USA

Experimental

Preparation of PMBTFVB Homopolymer

PMBTFVB **1** homopolymer was prepared via thermal step-growth cycloaddition polymerization of MBTFVB aryl TFVE monomer followed by end-capping with 4methoxytrifluorovinyloxybenzene according to previous literatures.^{25,26} GPC: M_n = 6,100 g/mol, M_w/M_n = 1.23. FT-IR: ν (cm⁻¹): 3054, 2931, 1598, 1498, 1312, 1269, 1201, 1122, 1009, 963, 926, 812, 742. ¹H NMR: δ (ppm): 2.07, 2.27 (3H, CH₃), 3.76 (3H, OCH₃), 6.98, 7.10 (3H, phenyl). ¹³C MNR: δ (ppm): 16.0 (CH₃), 55.4 (OCH₃), 105.6, 109.3, 112.9 (4C, cyclobutyl), 116.5, 121.4, 131.0, 148.5 (3C, phenyl). ¹⁹F NMR (CDCl₃): δ (ppm): -127.2 to -132.6 (6F, cyclobutyl- F_6).

Mono-Bromination of PMBTFVB

The pendant methyls of PMBTFVB 1 homopolymer were mono-brominated by NBS and BPO. In a typical procedure, PMBTFVB 1 ($M_{n,GPC} = 6,100 \text{ g/mol}, M_w/M_n =$ 1.23, 2.00 g, 7.04 mmol -CH₃ group), NBS (0.375 g, 2.11 mmol), and BPO (0.341 g, 1.41 mmol) were first added to a 500 mL three-neck flask (flame-dried prior to use) fitted with a reflux condenser followed by deoxygenating under N₂. Next, CCl₄ (350 mL) was charged via a gastight syringe and the solution was refluxed at 80°C for one day. After filtration, CCl₄ was rotary evaporated from the filtrate. The obtained solid was dissolved in ethyl acetate (400 mL) and the resulting solution was washed with distilled water (200 mL×2) followed by drying over MgSO₄. The solution was concentrated and precipitated into methanol. After repeated purification by dissolving in THF and precipitating in methanol, 1.301 g of white powder, PMBTFVB-Br 2a macroinitiator, was obtained after drying *in vacuo* overnight. GPC: $M_n = 6,900$ g/mol, $M_{\rm w}/M_{\rm n}$ = 1.26. EA: Br%: 6.19%. ¹H NMR: δ (ppm): 1.99, 2.18 (3H, CH₃), 3.68 (3H, OCH₃), 4.17, 4.34 (2H, CH₂Br), 6.86, 7.04, 7.16 (3H, phenyl). ¹³C MNR: δ (ppm): 16.2 (CH₃), 25.4 (CH₂Br), 55.4 (ArOCH₃), 105.8, 109.0, 112.8 (4C, cyclobutyl), 117.5, 119.7, 121.7, 130.0, 149.1 (3C, phenyl). ¹⁹F NMR (CDCl₃): δ (ppm): -127.1 to -132.7 (6F, cyclobutyl- F_6).

Figure S1. ¹H NMR spectrum of PMBTFVB 1 homopolymer in CDCl₃.

Figure S2. ¹H NMR spectrum of PMBTFVB-Br 2a in CDCl₃.

Figure S3. ¹H NMR spectrum of PMBTFVB-Br 2b in CDCl₃.

Figure S4. GPC curves of copolymer **3d** before and after the purification using preparative gel permeation chromatography.

Figure S5. GPC curves of copolymer **3f** before and after the purification using preparative gel permeation chromatography.