Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for

Star-shaped Carbazole-based BODIPY Derivatives with Improved Hole Transportation and Near-infrared Absorption for Small-Molecule Organic Solar

Cells with High Open-Circuit Voltages

Xinfu Zhang,[‡] Youdi Zhang,[‡] Lingcheng Chen* and Yi Xiao*

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China

E-mail: <u>lcchen@dlut.edu.cn</u>; E-mail: <u>xiaoyi@dlut.edu.cn</u>.

Contents

1	General
method S2	
2. TGA (Fig. S1)	
S3	
3. DFT calculation (Fig. S2) ·····	··· S4
4. Theoretically calculated HOMO and LUMO electron distribution (Fig. S3) \cdots S5	
5. Photophysical property (Table S1)	S6
6. Current density-voltage (<i>J-V</i>) curves (Fig. S4) ······ S7	
7. EQE (Fig. S5)	
S8	
8. AFM height images (Fig. S6) ······	S9
9. ¹ H NMR, ¹³ C NMR	S112

General Method

Relative quantum efficiencies of fluorescence of compounds are obtained by comparing the areas under the corrected emission spectrum of the test sample in diluted solvents with that of Rhodamine B ($\Phi_F = 0.69$) in methanol and a reported aza-BODIPY derivative in toluene which has a quantum efficiency of 0.42 according to the literature.^[1] Non-degassed, spectroscopic grade toluene and a 10 mm quartz cuvette are used. Dilute solutions (0.01 < A < 0.05) are used to minimize reabsorption effects. Quantum yields are determined using the equation (1):

 $\Phi_{\rm F}^{\rm (sample)} = \Phi^{\rm (standard)} \times ({\rm Abs}^{\rm (standard)} \times {\rm F}^{\rm (sample)}) / ({\rm Abs}^{\rm (sample)} \times {\rm F}^{\rm (standard)}) \text{equation (1)}$

Where $\Phi^{(\text{standard})}$ is the reported quantum yield of the standard, Abs is the absorbance at the excitation wavelength, F is the integrated emission spectra.

Fig. S1 TGA thermograms of (a) SAC, (b) DAC and (c) TAC measured under nitrogen flow (50 mL

min⁻¹) at a heating rate of 10 °C min⁻¹.

Fig. S2 Structure of DAC optimized by DFT calculation.

Fig. S3 Theoretically calculated HOMO and LUMO electron distribution of SAC, DAC and TAC.

Dye	λ_{abs}/nm	λ_{em}/nm	$\epsilon/(M^{-1} \text{ cm}^{-1})$	Φ_{f}
SAC	590	609	102000	0.62 ^[a]
DAC	674	692	121000	0.98 ^[b]
TAC	728	755	135000	0.42 ^[b]

Table S1 Photophysical properties of SAC, DAC, TAC in toluene.

[a] Rhodamine B is used as standard. [b] Reported 3, 5-bi (p–methoxy) phenyl-1, 7-bi (p-bromo) phenyl aza-BODIPY ($\Phi_f = 0.42$, in tolunene) is used as standard.

Fig. S4 Current density-voltage (J-V) curves of the OSCs based on TAC and PC₆₁BM with different weight ratios.

Fig. S5 The external quantum efficiencies (EQE) of TAC (SAC):PC₆₁BM at a weight ratio of 1:3.

Fig. S6 AFM height images (5 μ m × 5 μ m) of the active layers based on (A) SAC:PC₆₁BM, (B) TAC:PC₆₁BM.

S10

