Supporting Information

Synthesis of CaCO₃@C yolk-shell particles for CO₂ adsorption[†]

Yash Boyjoo,^a Kelly Merigot,^b Jean-François Lamonier,^c Vishnu K. Pareek,^a Moses O. Tade ^a and Jian Liu^{a,*}

^{*a*} Department of Chemical Engineering, Curtin University, Perth, WA 6845, Australia. * *Addresses correspondence to: jian.liu@curtin.edu.au*

^b Department of Physics, Curtin University, Perth, WA 6845, Australia.

^c Université de Lille1, Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, 59652 Villeneuve d'Ascq, France

Materials and methods Materials

Hexadecyltrimethylammonium bromide (CTAB, $\geq 99.0\%$), formaldehyde (37% solution), anhydrous calcium chloride (CaCl₂, >95%), anhydrous sodium carbonate (Na₂CO₃, $\geq 99.5\%$), aqueous ammonia (25% solution), poly(4-styrenesulfonic acid) sodium salt (PSS, MW~70,000 and 30% solution), ethanol (undenatured, 95-100%), resorcinol (99%) and tetraethyl orthosilicate (TEOS, $\geq 99.0\%$) were purchased from Sigma-Aldrich and used as received without any further purification. Washing was achieved with ultrapure water and reagent grade ethanol where required. Ultrapure water was used for solution preparations.

Synthesis of calcium carbonate (CaCO₃) nano-spheres

18 mL of $0.1M \text{ CaCl}_2$ solution containing 20 g L⁻¹ PSS was quickly added to 6 mL of 0.1M Na₂CO₃ solution also containing 20 g L⁻¹ PSS. The mixture was vigorously agitated using a magnetic stirrer for 15 minutes. The solid was washed 3 times with ultrapure water and collected by centrifugation followed by air-drying at 60°C for 24 hours.

Synthesis of CaCO₃@SiO₂ spheres

The synthesis of $CaCO_3@SiO_2$ core-shell spheres was performed according to the Stöber method reported elsewhere¹. In a typical experiment, 0.25 g of CaCO₃ was mixed with 40 mL of ultrapure water, 160 mL of undenatured ethanol and 2 mL aqueous ammonia. The mixture

was sonicated for 30 minutes and transferred to a magnetic stirrer. 1 mL of TEOS was added dropwise and the mixture was allowed to mix for 6 hours at 30°C. The solid was washed 3 times with a mixture of ultrapure water and ethanol and collected by centrifugation followed by air-drying at 60°C for 24 hours.

Synthesis of CaCO₃@SiO₂@C spheres

A carbon shell was added to the CaCO₃@SiO₂ core-shell spheres by using the following method. In a typical experiment 0.40 g of as-synthesised CaCO₃@SiO₂ spheres was mixed with 92 mL ultrapure water, 3.6 mL of 0.01M CTAB solution and 0.34 mL aqueous ammonia. The mixture was sonicated for 30 minutes and then transferred to a magnetic stirrer. After stirring for 30 minutes, 0.17 g of resorcinol was added. The mixture was allowed to mix for 30 more minutes after which 0.2 mL formaldehyde solution was added. The mixture was allowed to mix overnight to coat a resorcinol-formaldehyde (RF) layer on the CaCO₃@SiO₂ spheres. The solid CaCO₃@SiO₂@RF spheres was washed 3 times with ultrapure water and collected by centrifugation followed by air-drying at 60°C for 24 hours.

A carbon shell was obtained by carbonising the CaCO₃@SiO₂@RF solid in a tube furnace (LABEC, model: HTF40/12) under N₂ flow of 33 mL min⁻¹. The solid was heated from ambient temperature to 350°C at 1°C min⁻¹, held at 350°C for 2 hours, heated to 600°C at 1°C min⁻¹ and held at 600°C for 4 hours.

Synthesis of CaCO₃@C spheres

The middle SiO₂ layer was etched by vigorously stirring the CaCO₃@SiO₂@C solid in ca. 20 mL concentrated NaOH solution (2.5M) at 51°C for 3 hours to obtain the final CaCO₃@C solid product. The solid was washed 3 times with ultrapure water and collected by centrifugation followed by air-drying at 60°C for 24 hours.

Characterisation

The sample morphology was characterized by using a transmission electron microscope (TEM, JEOL EM-2011) and a scanning electron microscope (SEM, TESCAN MIRA 3). High Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) imaging and element mapping were carried out using a FEI Titan G2 80-200 TEM/STEM with ChemiSTEM Technology operating at 200 kV. The element maps were obtained by energy dispersive X-ray spectroscopy using the Super-X detector on the Titan

with a probe size ~1 nm and a probe current of ~0.4 nA. The nitrogen adsorption isotherm, BET surface area, BJH total pore volume and pore size distribution were obtained at 77K using a nitrogen sorption instrument (Micromeritics TriStar II Surface Area and Porosity Analyser). Prior to measurements in the nitrogen sorption analysers, the samples were degassed at 200 °C overnight. XRD patterns were measured using a Bruker-AXS D8 Advance Diffractometer with copper radiation (40 kV, 40 mA) and a LynxEye position sensitive detector. Crystalline phases were identified by using the Search/Match algorithm, DIFFRAC.EVA 3.1 (Bruker-AXS, Germany) to search the Powder Diffraction File (PDF4+, 2013 edition). The density of the CaCO₃ nanoparticles and CaCO₃@C were estimated by the ratio of the weight of the geometric volume, including the weight of entrapped air.

CO₂ adsorption

The carbon dioxide adsorption isotherm was obtained at room temperature using a carbon dioxide sorption instrument (Micromeritics Gemini 2360 Surface Area Analyser). Prior to measurements in the carbon dioxide sorption analysers, the samples were degassed at 200 °C overnight.

Figure S1: XRD data for calcined CaCO₃ nanoparticles. Presence of CaS and CaSO₄ attributed to the reaction of surfactant PSS with CaO.

Figure S2: Pore size distribution of CaCO₃@C particles. TEOS concentration = 2 mL g^{-1} CaCO₃, RF ratio = 0.5 and etching time = 3 hours.

Figure S3: N_2 adsorption isotherm for the CaCO₃ precursor nanoparticles. Pore size distribution shown in the inset.

Figure S4: Effect of TEOS concentration on cavity size of $CaCO_3@C$ particles; a) TEOS = 2 mL g⁻¹ $CaCO_3$, b) TEOS = 4 mL g⁻¹ $CaCO_3$ and c) TEOS = 6 mL g⁻¹ $CaCO_3$. RF ratio = 0.5 and etching time = 3 hours.

Figure S5: CO₂ adsorption isotherms (T = 23 ± 1 °C) of CaCO₃@C particles at different TEOS concentrations. RF ratio = 0.5 and etching time = 3 hours.

Figure S6: Effect of RF ratio on shell thickness of CaCO₃@C particles; a) RF = 0.5, b) RF = 1 and c) RF = 1.5. TEOS concentration = 4 mL g⁻¹ CaCO₃, etching time = 4 hours.

Figure S7: TGA data representing mass loss of CaCO₃ nanoparticles under a flow of Argon

Figure S8: XRD data for CaCO₃@C particles recalcined at: a) 650 °C, b) 700 °C and c) 750 °C. Recalcination was performed under N_2 for 1 hour.

Figure S9: CO₂ adsorption isotherms (T = 23 ± 1 °C) of CaCO₃@C particles at different etching times. TEOS concentration = 4 mL g⁻¹ CaCO₃, RF ratio = 0.5.

Notes and References

1 H. Chen, C. Deng and X. Zhang, Angewandte Chemie International Edition, 2010, 49, 607.