Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Utility of a Heterogeneous Palladium Catalyst for the Synthesis of a Molecular Semiconductor *via* Stille, Suzuki, and Direct Heteroarylation Cross-Coupling Reactions

Seth M. McAfee, Jenny S. J. McCahill, Casper M. Macaulay, Arthur D. Hendsbee and Gregory C. Welch*

Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, Canada, B3H 4R2

> * Corresponding Author Email: gregory.welch@dal.ca Phone Number: 1 (902) 494 4245 Fax Number: 1 (902) 494 1310

SUPPORTING INFORMATION

Table of Contents

Silia <i>Cat</i> ® Heterogeneous Catalysts	<u>S3</u>
Starting Materials Solution ¹ H NMR Spectra	<u></u> \$4-\$6
Product Solution ¹ H NMR Spectrum	<u></u> S7
Product Solution 2-D ¹ H NMR Spectrum	<u>S8</u>
ICP-OES Pd Analysis	

SiliaCat® Heterogeneous Catalysts

Table S1: SiliaCat® Heterogeneous Catalyst Information.

Heterogeneous Catalyst	$\begin{bmatrix} I \\ O \\ O \\ O \\ I \end{bmatrix}_{n}^{n}$ DPP-Pd	$\begin{bmatrix} I \\ O \\ O \\ S \\ O \\ I \end{bmatrix}_{n}^{n}$ S-Pd	
Loading	0.2 – 0.4 mmol/g	0.4 – 0.6 mmol/g	
Pore Size	25 – 70 Å		
Surface Area	300 – 650 m²/g		
	60 – 250 μm		

Product information available online: http://www.silicycle.com/ca/products/siliacatheterogeneous-catalysts/siliacat-heterogeneous-catalysts-product-range

Starting Materials Solution ¹H NMR Spectra

Figure S1: ¹H NMR spectra of starting material 1 in CDCl₃.

Figure S2: ¹H NMR spectra of starting material 2a in CDCl₃.

Figure S3: ¹H NMR spectra of starting material **2b** in CDCl₃.

Figure S4: ¹H NMR spectra of starting material **2c** in CDCl₃.

Product ¹H NMR Spectrum

Figure S5: Aromatic region ¹H NMR spectra of **SM-1** in $CDCl_3$ with 5.0 mol % catalyst loading under ambient conditions *via* conventional heating methods.

Product 2-D ¹H NMR Spectrum

Figure S6: 2-D COSY ¹H NMR spectra of the direct heteroarylation product **SM-1** in CDCl₃.

ICP-OES Pd Analysis

Catalyst	Material	Yield	Pd Content (mg/L)
Pd(PPh ₃) ₄	0.209 g	82 %	26.25
Silia <i>Cat</i> ® DPP-Pd	0.251 g	98 %	0.08*

Table S1: Trace Pd Analysis for the Synthesis of **SM-1** at 5.0 mol % Catalyst Loading *via* Conventional Heating Method.

* Detection limit of the instrument.

Samples were prepared from 10 mg of a given material, which was digested with 1.0 mL of 70 wt. % HNO_3 followed by 1.0 mL of 37 wt. % HCl. The contents were allowed to react in air for several hours and then loosely capped and set to stand overnight. Solid particulates were subsequently removed by filtering the solution through a 0.45 μ m PTFE filter and sealed in a new vial.

The prepared samples were submitted to Dalhousie University Minerals Engineering Centre (MEC) for trace Pd analysis. The instrument used was a Varian Vista Pro ICP-OES equipped with an OneNeb nebulizer and a glass cyclonic chamber. The prepared samples were diluted 10-fold into 10 % HCl aqueous solution and measurements were taken with the spectral line 340.458 nm, the preferred line for Pd analysis.

Materials Engineering Centre Manager - Daniel Chevalier daniel.chevalier@dal.ca