Supplementary Information

Single and double crown macrocyclic derivatives of cyclotriphosphazene as receptors of silver (I) ions

5 Natalia Gutowska^{a*}, Piotr Seliger ^a, Grzegorz Andrijewski ^a, Mariola Siwy ^b Magdalena Małecka ^c, Joachim Kusz ^d.

^a Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403 Łódź, Tamka 12, Poland

^b Polish Academy of Sciences, Centre of Polymer and Carbon Materials, 41-800 Zabrze, Marii Curie-Skłodowskiej 34, Poland

10 Compartment of Theoretical and Structural Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Lodz, Poland, ^d Institute of Physics, University of Silesia, Universite at 4, 40-007 Katowice, Poland

*E-mail: natalia_gutowska@wp.pl

15 Table S1. Crystallographic data for compound L2.

	compound L2
Empirical formula	$C_{26}H_{52}N_5O_{10}P_3$
Molecular weight	687.63
Size (mm)	$0.08\times0.11\times0.12$
Crystal system	orthorhombic
Space group	P21212
a[Å]	12.4915(2)
b[Å]	13.3518(2)
c[Å]	9.9705(1)
V[Å ³]	1662.92(4)
$Z/d_x[g \text{ cm}^{-3}]$	2/1.373
μ[cm ⁻¹]	0.239
λ[Å]	0.71073
max θ[°]	25.425
No. of measured reflections	27358
No. of unique reflections	8948
R _(int)	0.0234
No. of observed reflns (I>2 σ (I))	8348
Data/restraints/parameters	8948/0/200
R_1 (obsd data)	0.0273
$R_1(all data)$	0.0317
Goodness-of-fit on F^2	1.11
largest difference peak and hole [e/Å3]	0.485/-0.434

Table S2. The values of stepwise stability constants taken from the previous paper¹⁹.

	Tetrapyrrolidinyl-PNP-lariat ether		Tetramorpholinyl-PNP-lariat ether	
Complex form	$\log \beta$ in methanol	log β in acetonitrile	$\log \beta$ in methanol	log β in acetonitrile
$Ag^+ + L \rightarrow AgL^+$	4.38 ± 0.01	2.73 ± 0.01	3.20 ± 0.02	1.88 ± 0.01
$AgL^+ + L \rightarrow AgL_2^+$	3.14 ± 0.03	3.62 ± 0.01	3.38 ± 0.04	2.90 ± 0.01
$AgL^+ + Ag^+ \rightarrow Ag_2L^{2+}$	2.71 ± 0.02	2.07 ± 0.02	-	-

Table S3.	¹ H NMR and ¹³ C NMR data in	CD ₃ OD and CD ₃ CN for uncomplexed ligand	L1 - and after adding silver ion with the Ag:L r	nolar
ratio 0.5:1,	1:1 and 2:1			

	Methanol		Acetonitrile	
	¹ H NMR	¹³ C NMR	¹ H NMR	¹³ C NMR
	4.01 (2H, CH ₂ OP, m)	65.3	3.90 (2H, CH ₂ OP, m)	64.7
	3.94(2H, CH ₂ OP, m)	65.3	3.81(2H, CH ₂ OP, m)	64.7
	3.71 (2H, CH ₂ C, m)	71.2	3.62 (2H, CH ₂ C, m)	70.9
	3.65 (6H, CH ₂ C, m)	71.8	3.58 (6H, CH ₂ C, m)	71.4
LI	3.60 (4H, CH ₂ C, m)	71.7	3.55 (4H, CH ₂ C, m)	71.3
	3.07 (16H, CH ₂ N, m)	46.6	2.98 (16H, CH ₂ N, m)	46.1
	1.57 (8H, CH ₂ C, m)	25.9	1.53 (8H, CH ₂ C, m)	25.8
	1.53 (16H, CH ₂ C, m)	27.3	1.47 (16H, CH ₂ C, m)	27.2
	4.08 (2H, CH ₂ OP, m)	66.1	3.97 (2H, CH ₂ OP, m)	65.5
	3.99 (2H, CH ₂ OP, m)	66.1	3.90(2H, CH ₂ OP, m)	65.5
	3.76 (2H, CH ₂ C, m)	71.3	3.66 (2H, CH ₂ C, m)	70.8
$\mathbf{I}1 \perp 05\mathbf{A}\mathbf{z}$	3.67 (6H, CH ₂ C, m)	71.4	3.58 (6H, CH ₂ C, m)	71.3
$LI \pm 0.3 \text{ Ag}$	3.63 (4H, CH ₂ C, m)	71.4	3.55 (4H, CH ₂ C, m)	71.2
	3.11 (16H, CH ₂ N, m)	46.7	3.04 (16H, CH ₂ N, m)	46.3
	1.60 (8H, CH ₂ C, m)	25.9	1.55 (8H, CH ₂ C, m)	25.6
	1.56 (16H, CH ₂ C, m)	27.3	1.50 (16H, CH ₂ C, m)	27.1
	4.15 (2H, CH ₂ OP, m)	66.6	4.00 (2H, CH ₂ OP, m)	65.8
	4.00(2H, CH ₂ OP, m)	66.6	3.93(2H, CH ₂ OP, m)	65.8
	3.81 (2H, CH ₂ C, m)	71.0	3.68 (2H, CH ₂ C, m)	70.7
	3.71 (6H, CH ₂ C, m)	70.5	3.58 (6H, CH ₂ C, m)	71.2
L1 + 1 Ag	3.67 (4H, CH ₂ C, m)	70.2	3.55 (4H, CH ₂ C, m)	70.9
-	3.14 (8H, CH ₂ N, m)	46.8	3.05 (16H, CH ₂ N, m)	46.3
	3.09 (8H, CH ₂ N, m)	46.6		25.5
	1.61 (8H, CH ₂ C, m)	25.8	1.56 (8H, CH ₂ C, m)	27.0
	1.56 (16H, CH ₂ C, m)	27.3	1.51 (16H, CH ₂ C, m)	
	4.22 (2H, CH ₂ OP, m)	67.0	4.02 (2H, CH ₂ OP, m)	65.9
	4.06(2H, CH ₂ OP, m)	67.0	3.93(2H, CH ₂ OP, m)	65.9
	3.85 (2H, CH ₂ C, m)	70.8	$3.69(2H, CH_2C, m)$	70.6
L1 + 2 Ag	3.75 (6H, CH ₂ C, m)	69.4	3.59 (6H, CH ₂ C, m)	71.1
	3.69 (4H, CH ₂ C, m)	69.9	3.57 (4H, CH ₂ C, m)	71.1
	3.18 (8H, CH ₂ N, m)	47.6	3.06 (16H, CH ₂ N, m)	46.3
	3.11 (8H, CH ₂ N, m)	46.7	1.56 (8H, CH ₂ C, m)	25.5
	1.61 (8H, CH ₂ C, m)	25.6	1.51 (16H, CH ₂ C, m)	26.9
	1.57 (16H, CH ₂ C, m)	27.2	· · · /	

	Methanol			Acetonitrile
	¹ H NMR	¹³ C NMR	¹ H NMR	¹³ C NMR
	4.37 (2H, P(CH ₂ O) ₂ , m)	66.7	4.34 (2H, P(CH ₂ O) ₂ , m)	66.1
	4.04 (2H, P(CH ₂ O) ₂ , m)	66.7	3.93 (2H, P(CH ₂ O) ₂ , m)	66.1
	4.33 (2H, CH ₂ OP, m)	64.4	4.26 (2H, CH ₂ OP, m)	64.2
	3.68 (2H, CH ₂ OP, m)	64.4	3.62 (2H, CH ₂ OP, m)	64.2
1.2	3.74 (22H, CH ₂ C, m)	71.8,71.7,71.5,	3.68 (22H, CH ₂ C, m)	71.4,71.2,71.1,
		71.3,71.1		70.9,70.5
	3.51 (2H, CH ₂ C, m)	70.1	3.45 (2H, CH ₂ C, m)	69.7
	3.14 (8H, CH ₂ N, m)	46.6	3.10 (8H, CH ₂ N, m)	46.2
	1.57 (4H, CH ₂ C, m)	25.9	1.54 (4H, CH ₂ C, m)	25.6
	1.53 (8H, CH ₂ C, m)	27.2	1.47 (8H, CH ₂ C, m)	27.0
	4.37 (2H, P(CH ₂ O) ₂ , m)	66.9	4.34 (2H, P(CH ₂ O) ₂ , m)	66.9
	4.07 (2H, P(CH ₂ O) ₂ , m)	66.9	4.06 (2H, P(CH ₂ O) ₂ , m)	66.9
	4.33 (2H, CH ₂ OP, m)	64.6	4.22 (2H, CH ₂ OP, m)	64.9
	3.75 (2H, CH ₂ OP, m)	64.6	3.69 (2H, CH ₂ OP, m)	64.9
L2 + 0.5 Ag	3.77 (22H, CH ₂ C, m)	71.8,71.6,71.4,71.1	3.70 (22H, CH ₂ C, m)	71.3,71.2,71.1,70.4
	3.52 (2H, CH ₂ C, m)	70.2	3.49 (2H, CH ₂ C, m)	70.1
	3.15 (8H, CH ₂ N, m)	46.6	3.11 (8H, CH ₂ N, m)	46.2
	1.58 (4H, CH ₂ C, m)	25.9	1.55 (4H, CH ₂ C, m)	25.5
	1.54 (8H, CH ₂ C, m)	27.2	1.49 (8H, CH ₂ C, m)	26.9
	4.38 (2H, P(CH ₂ O) ₂ , m)	67.1	4.35 (2H, P(CH ₂ O) ₂ , m)	67.7
	4.10 (2H, P(CH ₂ O) ₂ , m)	67.1	4.17 (2H, P(CH ₂ O) ₂ , m)	67.7
L2 + 1 Ag	4.32 (2H, CH ₂ OP, m)	64.8	4.19 (2H, CH ₂ OP, m)	65.6
	3.82 (2H, CH ₂ OP, m)	64.8	3.82 (2H, CH ₂ OP, m)	65.6
	3.78 (22H, CH ₂ C, m)	71.8,71.6,71.4,70.9	3.72 (22H, CH ₂ C, m)	71.6,71.3,71.2,70.6
	3.57 (2H, CH ₂ C, m)	70.2	3.54 (2H, CH ₂ C, m)	70.3
	3.16 (8H, CH ₂ N, m)	46.6	3.11 (8H, CH ₂ N, m)	46.3
	1.59 (4H, CH ₂ C, m)	25.8	1.56 (4H, CH ₂ C, m)	25.4
	1.55 (8H, CH ₂ C, m)	27.2	1.50 (8H, CH ₂ C, m)	26.9
	$4.41 (2H, P(CH_2O)_2, m)$	68.6	4.35 (2H, P(CH ₂ O) ₂ , m)	68.2
	$4.29 (2H, P(CH_2O)_2, m)$	68.6	$4.22 (2H, P(CH_2O)_2, m)$	68.2
	4.30 (2H, CH ₂ OP, m)	66.4	4.19 (2H, CH ₂ OP, m)	66.2
	3.94 (2H, CH ₂ OP, m)	66.4	3.90 (2H, CH ₂ OP, m)	66.2
L2 + 2 Ag	$3.79 (22H, CH_2C, m)$	72.1,71.8,71.7,71.0	$3.71 (22H, CH_2C, m)$	71.6,71.4,71.2,70.7
	$3.65 (2H, CH_2C, m)$	70.8	$3.58 (2H, CH_2C, m)$	70.4
	$3.18 (8H, CH_2N, m)$	46.8	$3.12 (8H, CH_2N, m)$	46.4
	$1.60 (4H, CH_2C, m)$	25.6	$1.57 (4H, CH_2C, m)$	25.3
	1.56 (8H, CH ₂ C, m)	27.2	1.51 (8H, CH ₂ C, m)	26.9
	$4.47 (2H, P(CH_2O)_2, m)$	69.5	$4.36 (2H, P(CH_2O)_2, m)$	68.6
	$4.40 (2H, P(CH_2O)_2, m)$	69.5	$4.28 (2H, P(CH_2O)_2, m)$	68.6
	$4.34 (2H, CH_2OP, m)$	67.4	$4.21 (2H, CH_2OP, m)$	66.6
T.A . A .	4.06 (2H, CH ₂ OP, m)	67.4	$3.95 (2H, CH_2OP, m)$	66.6
L2 + 3 Ag	$3.80(22H, CH_2C, m)$	72.3,71.9,71.8,71.3	3.72 (22H, CH ₂ C, m)	/1.6,/1.4,/1.2,/0.9
	$3.70(2H, CH_2C, m)$	/0.9	$3.61 (2H, CH_2C, m)$	/0.5
	$3.20 (8H, CH_2N, m)$	47.0	$3.14 (8H, CH_2N, m)$	46.5
	$1.62 (4H, CH_2C, m)$	25.5	$1.58 (4H, CH_2C, m)$	25.2
	$1.5/(8H, CH_2C, m)$	27.1	$\frac{1.52 (8H, CH_2C, m)}{4.20 (2H, PCCH, C)}$	26.8
	$4.4/(2H, P(CH_2O)_2, m)$	69.7	$4.36 (2H, P(CH_2O)_2, m)$	68./ (9.7
	4.43 (2H, $P(CH_2O)_2, m)$	69./	$4.30 (2H, P(CH_2O)_2, m)$	08./
	$4.35 (2H, CH_2OP, m)$	0/./ 67.7	$4.21 (2H, CH_2OP, m)$	66./
	$4.10(2H, CH_2OP, M)$	0/./	$3.90(2H, CH_2OP, M)$	
L2 + 4 Ag	$3.81 (22H, CH_2C, m)$	/2.2,/1.9,/1.8,/1.3	3.72 (22H, CH ₂ C, m)	/1.0,/1.4,/1.2,/0.9
	3./1 (2H, CH ₂ C, M)	/0.9	$3.02 (2H, CH_2C, M)$	/0.5
	$5.21 (\delta H, CH_2 N, M)$	47.U 25.4	$5.14 (\delta H, CH_2N, M)$	40.5
	$1.03 (4H, CH_2C, m)$	25.4	$1.58 (4H, CH_2C, m)$	25.2
	1.59 (8H, CH ₂ C, m)	27.1	1.52 (8H, CH ₂ C, m)	26.8

Table S4. ¹H NMR and ¹³C NMR data in CD₃OD and CD₃CN for uncomplexed ligand L2 – and after adding silver ion with the Ag:L molarratio 0.5:1, 1:1, 2:1, 3:1 and 4:1

Fig.S1 $^1\mathrm{H}-{^{31}\mathrm{P}}$ HMBC spectrum in CD₃CN for L2

Scheme S1 Syntheses of L1 and L2 ligands