Development of a Novel Nitrite Electrochemical Sensor by Stepwise in situ Formation of Palladium and Reduced Graphene Oxide Nanocomposites

Li Fu^a, Shuhong Yu^b, Lachlan Thompson^a and Aimin Yu^{a,*}

^a Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn VIC 3122, Australia

^b Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

Supplementary Materials

Figure S1. FTIR spectra of GO and Pd/RGO composite.

Figure S2. XRD pattern for Pd/RGO composites.

Figure S3. Cyclic voltammograms of bare, G/Pd, G/RGO and G/Pd/RGO-3 in 0.1 M KCl containing 1 mM [Fe(CN)6]^{4–}. Scan rate: 20 mV/s.

Figure S4. Cyclic voltammograms of bare, G/Pd, G/RGO and G/Pd/RGO-3 in 0.1 M PBS (pH = 7.0). Scan rate: 50 mV/s.

Figure S5. Differential pulse voltammograms at the G/Pd/RGO-3 for eight successive repetitive measurement of 1 mM nitrite.

Figure S6. Differential pulse voltammograms of six G/Pd/RGO-3 electrodes for detecting 1 mM nitrite.

Figure S7. *I*-t curve recorded on the G/Pd/RGO-3 in the PBS by addition of 0.2 mM of (a) nitrite, 2 mM of (b) K⁺, (c) Na⁺, (d) Zn²⁺, (e) SO₄²⁻, (f) CO₃²⁻, (g) NH₄⁺, (h) HPO₄²⁻, 1 mM of (i) glucose, (j) dopamine, (k) uric acid and (l) ascorbic acid at 0.8 V. Inset: *I*-t curve recorded on the G/Pd/RGO-3 in the PBS by addition of 0.4 mM of nitrite at 0.8 V for 4000 s.

Electrode	Method	Potential		Linear range(µM)	Reference
		<u>(V)</u>	<u>(µM)</u>	0 5 100	F13
GC/MC	DPV	0.808	0.1	0.5-100	[1]
(p-NiTAPc)	CV	0.86	0.9	2.5-1000	[2]
modified GCE					
TiO ₂ /ND	DPV	0.73	0.55	50-1000	[3]
Thionine/ACNTs	DPV	0.8	1.12	3-500	[4]
GR/PPy/CS/GCE	I-t	0.9	0.1	0.5-722	[5]
GNPs/MWCPE	SWV	0.9	0.01	0.05-250	[6]
G/Pd/RGO	DPV	0.75	0.23	1-1000	This work

Table S1 Performance comparison of the proposed G/Pd/RGO-3 electrode and electrodes reported by previous reports.

GC = Glassy carbon; MC = chitosan-carboxylated multiwall carbon nanotube; ND = Nanodiamond; ACNTs = Aligned carbon nanotubes; GR/PPy/CS = graphene/polypyrrole/chitosan; GNPs/MWCPE = gold nanoparticles/multi-walled carbon nanotube/carbon paste electrode

References

- L. Jiang, R. Wang, X. Li, L. Jiang, G. Lu, Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode, Electrochemistry Communications, 7 (2005) 597-601.
- [2] Z.-H. Wen, T.-F. Kang, Determination of nitrite using sensors based on nickel phthalocyanine polymer modified electrodes, Talanta, 62 (2004) 351-355.
- [3] L.Y. Bian, Y.H. Wang, J. Lu, J.B. Zang, Synthesis and electrochemical properties of TiO2/nanodiamond nanocomposite, Diamond and Related Materials, 19 (2010) 1178-1182.
- [4] K. Zhao, H. Song, S. Zhuang, L. Dai, P. He, Y. Fang, Determination of nitrite with the electrocatalytic property to the oxidation of nitrite on thionine modified aligned carbon nanotubes, Electrochemistry Communications, 9 (2007) 65-70.
- [5] D. Ye, L. Luo, Y. Ding, Q. Chen, X. Liu, A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode, The Analyst, 136 (2011) 4563-4569.
- [6] A. Afkhami, F. Soltani-Felehgari, T. Madrakian, H. Ghaedi, Surface decoration of multiwalled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite, Biosensors & bioelectronics, 51 (2014) 379-385.