Supplementary Information

Potential-gated molecularly imprinted smart electrode for nicotinamide analysis

Najmeh Karimian^{a,b}, Mohammad Hossein Arbab Zavar^b, Mahmoud Chamsaz^b, Narges Ashraf^b,

Anthony P.F. Turner^a and Ashutosh Tiwari^{a*}

^aBiosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology (IFM),

Linköping University, S-58183 Linköping, Sweden

^bDepartment of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

^c Tekidag AB, Mjärdevi Science Park, Teknikringen 4A, SE 583 30 Linköping, Sweden

*Corresponding author.

Tel: (+46) 1328 2395; Fax: (+46) 1313 7568; E-mail: ashutosh.tiwari@liu.se

Fig. S1. Chemical structure of nicotinamide, thiamine hydrochloride, ascorbic acid, 4-Aminobenzoic acid, pyridoxal, riboflavin.

Fig. S2. Preparation of NIP electrode via electropolymerisation of pyrrole. Cyclic voltammogram for pyrrole electropolymerisation at a glassy carbon electrode. (Py: 50.0 mM, sodium perchlorate: 100.0 mM in aqueous solution, number of cycles = 16, potential range -0.2 to +1.7 V and scan rate 100 mV s⁻¹).

Fig. S3. Optimisation of factor affecting the performance of the modified electrode. Effect of pH on δi_p at the NAM/MIP-GCE in the solutions containing 0.5 mM K₃Fe(CN)₆, 0.5 mM K₄Fe(CN)₆, 0.1 M KCl in the presence of 15.0 μ M nicotinamide after 10 min incubation time.

Fig. S4. The relationship between logarithm of the concentration of NAM and the current response of $[Fe(CN)_6]^{3-}/[Fe(CN)_6]^{4-}$ on NIP-GCE.