Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supporting Information To:

Development of environmentally sensitive fluorescent and dual emissive deoxyuridine analogues

Nicolas P. F. Barthes,^a Julie Karpenko,^{a,b} Dmytro Dziuba,^{a,c} Marie Spadafora,^a Jérémy Auffret,^a Alexander P. Demchenko,^d Yves Mély,^e Rachid Benhida,^a Benoît Y. Michel,^{*a} Alain Burger^{*a}

a) Institut de Chimie de Nice, UMR 7272, Université de Nice Sophia Antipolis, CNRS, Parc Valrose, 06108 Nice Cedex 2, France.

b) Present address: Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Laboratory of Protein Engineering, BCH, Av. Forel 2, CH-1015 Lausanne, Switzerland.

c) Present address: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, CZ-16610, Prague 6, Czech Republic.

d) A.V. Palladin Institute of Biochemistry, 9 Leontovicha Street, Kiev 01030, Ukraine.

e) Laboratoire de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France.

Corresponding author: <u>burger@unice.fr</u>

Table of contents

Experimental Section	Pages
General Methods	

Supporting Information

1. Additional data	4
2. Steady-state fluorescence (Fig. S1-S6, Table S1)	
2. Hydration study (Fig. S7-S9, Table S2)	
3. Synthetic procedures	
4. NMR spectra	
NMR spectra of compounds:	

9
10
11
12
13
14
15
Diacetate derivative
17
TMS-acetylene derivative
18
19
20
21
22
23
24
2
3
4

5. HPLC chromatograms of TCU, FCU & PCU......108–110

Experimental section

General methods:

All non-aqueous reactions involving water-sensitive reagents were performed in oven dried glassware under argon using dry solvents. The synthetic intermediates were coevaporated twice with toluene beforehand and dried in vacuo before use. All chemical reagents were obtained from commercial sources and were used as supplied. Anhydrous solvents were obtained according to standard procedures.¹ The reactions were monitored by thin-layer chromatography (TLC, Merck silica gel 60 F254 plates) and visualized both by UV radiation (254 & 365 nm) and by spraying with phosphomolybdic acid in ethanol followed by a subsequent warming with a heat gun. Column chromatography² was performed with flash silica gel (40-63 mm). Analytical HPLC were performed using a Waters™ 600 (600 pump, 600E Controler, 996 Photodiode Array Detector) and a Jasco LC-Net II / ADC apparatus. A RP C18 column (300 × 4.60 mm, 5 µm particle size, Luna[®] 100Å, Phenomenex[®]) was used with mobile phases: A: H₂O (0.1 % HCOOH) and B: CH₃CN (0.1 % HCOOH) at a flow rate of 0.5 mL/min (see SI page 109 for the control method). The NMR spectra (¹H, ¹³C, ²D: ¹H–¹³C COSY, ¹H–¹³C HMQC and ¹H–¹³C HMBC) were recorded on 200 or 500 Bruker Advance Spectrometers (200 or 500 MHz). ¹H NMR (200 and 500 MHz), ¹³C NMR (50 and 125 MHz, recorded with complete proton decoupling) spectra were obtained with samples dissolved in CDCl₃, CD₃OD, or DMSO-d⁶, with the solvent signals as internal references: 7.26 ppm for CHCl₃, 3.31 ppm for CD₂HOD, 2.50 ppm for (CD₃)(CD₂H)S(O) for ¹H NMR experiments, and 77.0 ppm for CDC₁₃, 49.0 ppm for CD₃OD, 39.4 ppm for (CD₃)₂S(O) for ¹³C NMR experiments.³ Chemical shifts (δ) are given in ppm to the nearest 0.01 (1H) or 0.1 ppm (¹³C). The coupling constants (J) are given in Hertz (Hz). The signals are reported as follows: (s=singlet, d=doublet, t=triplet, m=multiplet, br=broad). Assignments of ¹H and ¹³C NMR signals were achieved with the help of D/H exchange, COSY, DEPT, APT, HMQC, HSQC, HMBC experiments. Regular mass spectra (MS) were recorded on an Esquire 3000 Plus apparatus with ESI in both positive and negative mode. High-resolution mass spectrometry was conducted with a FINIGAN MAT 95 spectrometer with EI or ESI ionization techniques. All solvents for absorption and fluorescence experiments were of spectroscopic grade. Stock solutions were prepared using 1,4-dioxane. The samples used for spectroscopic measurements contained $\approx 0.1\%$ v/v of the stock solvent. The absorption spectra were recorded on a Cary 300 Scan spectrophotometer (Varian) using 1cm quartz cells at 20 °C. The fluorescence spectra were recorded on a FluoroMax 4.0 spectrofluorometer (Jobin Yvon, Horiba). They were recorded using excitation and emission slits of 2 nm and were corrected at excitation and emission. They were taken with absorbance less than 0.05 at 20 °C at the excitation wavelength mentioned in the corresponding experiments. The quantum yields were determined taking into account the change of the refractive index of the solvents.

¹ W. L. F. Armarego and C. L. L. Chai, *Purification of Laboratory Chemicals*, 7th ed.; Butterworth-Heinemann: Oxford, 2013. ² W. C. Still, M. Kahn and A. Mitra, *J. Org. Chem.*, 1978, **43**, 2923–2925.

³ (*a*) H. E. Gottlieb, V. Kotlyar and A. Nudelman, *J. Org. Chem.*, 1997, **62**, 7512–7515; (*b*) G. R. Fulmer, A. Miller, N. H. Sherden and H. E. Gottlieb, *Organometallics*, 2010, **29**, 2176–2179.

Supporting Information

1. Additional Data

Preparation of ethynyl 3HCs

Scheme S1. Cleavage of the TMS group, exhibiting a lack of reproducibility due to a partial and concomitant removal of Cbz as well as a decomposition of the anionic form.

Figure S1. Considered 3-hydroxychromones for the spectroscopic comparison listed in Table 1: parent 2-aryl-3-HCs (**PC**, **TC** and **TC**) and corresponding nucleosidic conjugates (**PCU**, **FCU** and **TCU**) are depicted on the first and second rows, respectively.

2. Steady-state fluorescence measurements

Fig. S2 A) Fluorescence spectra in the set of investigated solvents; B) Normalized emission spectra by N* band for protic (top) and aprotic (bottom) solvents.

Fig. S3 A) Fluorescence spectra in the set of investigated solvents; B) Normalized emission spectra by N* band for protic (top) and aprotic (bottom) solvents.

Fig. S4 A) Fluorescence spectra in the set of investigated solvents; B) Normalized emission spectra by N* band for protic (top) and aprotic (bottom) solvents.

Solvanta	A C ^a	$\Delta v (cm^{-1})^{b}$						
Solvants	ΔJ	FCU	TCU					
HFIP ^c	0.3118	5690	5253					
H_2O	0.3201	5535	5396					
MeOH	0.3087	5719	5475					
EtOH	0.2888	5348	5166					
CH ₃ CN	0.3055	4719	4544					
Acetone	0.2842	4533	4188					
CHCl ₃	0.1482	3251	3307					
EtOAc	0.1998	4083	3789					
Footnote: ^a Linn	ert's Parameter	$\Delta f = \left(\frac{\varepsilon - 1}{\varepsilon}\right)$	$n^2 - 1$					

Table S1: Lippert-Mataga data of FCU and TCU

Footnote: ^a Lippert's Parameter: $\Delta f = \left(\frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1}\right)$. In this equation, *n* is the refractive index and ε is

the dielectric constant (values found in: R. C. Weast., M. J. Astle,; CRC Handbook of Chemistry and Physics, 60th ed.; CRC: Boca Raton, Florida, 1980, p:2528) ^b Stock shift values, ^c Value of ε found in Hong D. P., Hoshino M., Kuboi R., Goto Y. (**1999**) *J. Am. Chem. Soc. 121*, 8427–8433.

Fig. S5 & S6: Stokes shift vs. orientation polarizability function (Δf) for FCU and TCU. The linear plots shown were obtained with aprotic solvents according to the Lippert's equation (red triangles and red line). The positions of the points for protic solvents are shown in blue dots.

Lippert's Equation:
$$v_A - v_F = \frac{2}{hc} \Delta f \frac{(\mu_E - \mu_G)^2}{a^3}$$
.

In this equation, $h = 6.6256 \times 10^{-27}$ ergs) is the Planck's constant, $c = 2.9979 \times 10^{10}$ cm/s) is the speed of light, and *a* is the radius of the Onsager's cavity. v_A and v_F are the wavenumbers (cm⁻¹) of the absorption and emission, respectively, Δv is the Stokes shift (cm⁻¹), Δf is the Lippert's parameter, and μ_e and μ_g are the dipole moments of the excited and ground states, respectively.

Remark: Exploiting the Lippert's equation to get the difference of the dipole moments $(\mu_e - \mu_g)$ needs to determine the Onsager radius. In the Lippert-Mataga model the fluorophore is treated as a solute occupying a spherical volume for which the radius corresponds to the Onsager radius. Measuring the distance at the two extremes of the fluorophore and dividing the distance by two determine the Onsager radius. In general this distance corresponds to the distance between the donor and acceptor groups of the fluorophore. Applying this approximation to **FCU** and **TCU** is not satisfactory because they are extended conjugated fluorophores with the acceptor group, the carbonyl group, which is not positioned at one extreme.

3. Hydration Study

Fig. S7 Sensitivity of the emission spectra to hydration for A) PCU, B) FCU and C) TCU. Data were recorded in gradual mixtures of dioxane and water. Emission spectra were normalized by T* band.

	Acetonitrile									Dioxane								
	PCU		I	FCU		TCU		PCU		FCU			TCU					
% Water	$\lambda_{N^{\ast}}{}^{a}$	$\lambda_{T^*}{}^b$	$I_{N^*}/I_{T^*}^{c}$	$\lambda_{N^*}{}^a$	${\lambda_{T*}}^b$	$I_{N^*}/I_{T^*}^c$	$\lambda_{N^{\ast}}{}^{a}$	${\lambda_{T*}}^b$	$I_{N^*}/I_{T^*}^{c}$	${\lambda_N}\ast^a$	${\lambda_{T*}}^b$	$I_{N^{\ast}}/I_{T^{\ast}}{}^{c}$	${\lambda_N*}^a$	${\lambda_{T*}}^b$	$I_{N^*}/I_{T^*}^c$	$\lambda_{N^{\ast}}{}^{a}$	${\lambda_{T*}}^b$	I_{N*}/I_{T*}^{c}
100	480	522	0.74	495	- ^d	- ^d	501	_ ^d	_ ^d	480	521	0.75	497	_ ^d	_ ^d	500	_ d	_ ^d
90	481	529	0.67	495	- ^d	- ^d	501	538	1.15	480	528	0.66	494	_ d	- ^d	497	539	1.17
80	481	533	0.56	495	- ^d	- ^d	497	547	1.07	480	539	0.57	494	- ^d	_ ^d	498	552	1.08
70	180	539	0.46	492	539	1.40	498	555	0.93	480	542	0.47	490	539	1.37	494	561	0.89
60	478	542	0.39	492	541	1.35	496	560	0.77	480	546	0.38	489	544	1.32	493	567	0.72
50	477	543	0.34	491	546	1.25	496	565	0.65	476	550	0.31	487	559	1.11	490	571	0.56
40	478	546	0.31	490	555	1.13	494	566	0.56	467	551	0.24	483	562	0.84	485	574	0.46
30	478	548	0.28	490	556	0.98	492	568	0.47	461	553	0.18	478	568	0.64	481	578	0.39
20	474	548	0.23	488	562	0.79	494	572	0.39	451	554	0.14	475	570	0.47	479	579	0.34
10	472	550	0.17	483	565	0.53	487	571	0.30	439	554	0.09	466	573	0.32	473	581	0.30
0	454	550	0.03	466	573	0.20	473	578	0.27	422	554	0.05	448	573	0.34	461 ^e	584	e

Table S2. Spectroscopic properties of 3-hydroxychromone uridine analogs PCU, FCU, and TCU in dioxane / water and acetonitrile / water mixtures.

Footnotes: a) position of the N* emission band maximum; b) position of the T* emission band maximum; c) ratio of two intensity maxima for the N* and T* emission bands; d) single emission band was observed; e) unexplained additional emission band was observed at 438 nm.

Fig. S8 Dependence of the ratiometric response (I_{N*}/I_{T*}) of **PCU** (blue), **FCU** (green) and **TCU** (orange) on the water concentration in dioxane. The ratios were extracted from the spectra in Fig. S4.

Fig. S9 Summary of Fig 5 & S5: correlation between the ratiometric response (I_{N*}/I_{T*}) and the water concentration in dioxane and acetonitrile.

4. Synthetic procedures

Preparation of the 3HC fluorophores

2-(4-Bromophenyl)-3-hydroxy-chromen-4-one (9): To a stirred solution of *o*-hydroxyacetophenone **5** (1.16 mL, 9.65 mmol) and 4-bromobenzaldehyde **6** (1.79 g, 9.65 mmol) in ethanol (50 mL) was dropwise added a 5 N NaOH solution (6 mL). The reaction mixture was stirred 48 h at rt before a dropwise addition of 30 % aq. hydrogen peroxide solution (2 mL). The resulting mixture was stirred 1 day at rt, and then poured into cold water (300 mL) and acidified with 1 N HCl to pH 3. The resulting precipitate was filtered and thoroughly washed with water and cyclohexane to provide as a yellow solid the target derivative **9** (1.78 g, 58 %).

C₁₅H₉BrO₃ (317.13). R_f = 0.49 (cyclohexane/EA = 7:3 ¹H-NMR (CDCl₃, 200 MHz): 7.09 (s, 1H, OH), 7.43 (td, ³*J*=7.0 Hz, ⁴*J*=1.0 Hz, H6), 7.59 (d, ³*J*=8.0 Hz, 1H, H8), 7.66 (d, ³*J*=8.8 Hz, 1H, H_m-Ph), 7.73 (ddd, ³*J*=8.0, 7.0 Hz, ⁴*J*=1.4 Hz, 1H, H7), 8.15 (d, ³*J*=8.8 Hz, 2H, H_o-Ph), 8.25 (dd, ³*J*=8.0 Hz, ⁴*J*=1.4 Hz, 1H, H5); ¹³C-NMR (DMSO-*d*⁶, 50 MHz): δ = 118.3 (C8), 121.2 (C10), 123.2 (C_p-Br), 124.5 (C6), 124.7 (C5), 129.4 (C_o-Ph), 130.5 (C_i-Ph), 131.5 (C_m-Ph), 133.7 (C7), 139.4 (C3), 143.9 (C2), 154.4 (C9), 172.9 (C4); ¹³C-NMR (CDCl₃, 50 MHz): δ = 118.2 (C8), 120.6 (C10), 124.7 (C6), 125.5 (C5), 129.2 (C_m-Ph), 130.0 (C_p-Br), 131.9 (C_o-Ph), 133.8 (C7), 138.5 (C3), 143.8 (C_i-Ph), 155.3 (C9), 157.3 (C2), 173.4 (C4); MS (ESI⁺, MeOH): *m/z*: 339.0, 341.0 [M+Na]⁺.

2-(5-Bromofur-2-yl)-3-hydroxy-chromen-4-one (10): To a stirred solution of *o*-hydroxyacetophenone **5** (3.0 mL, 24.9 mmol) and 5-bromo-2-furanecarbaldehyde (fufural) **7** (4.37 g, 24.9 mmol) in ethanol (45 mL) was dropwise added a 5 N NaOH solution (9 mL). The reaction mixture was stirred 48 h at rt before a dropwise addition of 30 % aq. hydrogen peroxide solution (17 mL). The resulting mixture was stirred 30 min at rt, and then poured into cold water (300 mL) and acidified with 1 N HCl to pH 3. The resulting precipitate was filtered and

thoroughly washed with water and cyclohexane to provide as a yellow solid the target derivative **10** (3.90 g, 51 %). C₁₃H₇BrO₄ (307.10). $R_f = 0.33$ (CyHex/EA = 7:3); ¹H-NMR (DMSO- d^6 , 200 MHz): $\delta = 6.89$ (d, 1H, ³J=2.4 Hz, Hβ-fur), 7.24 (d, 1H, ³J=2.4 Hz, Hα-fur), 7.45 (dd, 1H, ³J=6.8, 5.8 Hz, H6), 7.64–7.84 (m, 2H, H7, H8), 8.09 (d, 1H, ³J=7.6 Hz, H5), 10.23 (s, 1H, 3-OH); 6.74 (d, 1H, ³J=3.4 Hz, Hβ-fur), 7.28–7.36 (m, 1H, H6), 7.33 (d, 1H, ³J=3.4 Hz, Hα-fur), 7.58–7.66 (m, 2H, H8, H7), 8.05 (d, 1H, ³J=7.8 Hz, H5); ¹³C-NMR (DMSO- d^6 , 50 MHz): $\delta = 112.5$ (Cα), 114.2 (Cβ), 117.9 (C8), 121.1 (C10), 121.8 (*Fur*-Br), 123.0 (C6), 124.8 (C5), 131.6 (C7), 137.8 (C3), 149.5 (C2-*Fur*), 149.6 (C2), 153.4 (C9), 176.2 (C4); MS (ESI⁺, MeOH): *m/z*: 329.1, 331.0 [M+Na]⁺.

2-(5-Bromothien-2-yl)-3-hydroxy-chromen-4-one (11): To a stirred solution of *o*-hydroxyacetophenone **5** (1.16 mL, 9.65 mmol) and 5-bromo-2-thiophenecarbaldehyde **8** (1.15 mL, 9.65 mmol) in ethanol (50 mL) was dropwise added a 5 N NaOH solution (6 mL). The reaction mixture was stirred 48 h at rt before a dropwise addition of 30 % aq. hydrogen peroxide solution (2 mL). The resulting mixture was stirred 5 h at rt, and then poured into cold water (300 mL) and acidified with acetic acid to pH 4. The resulting precipitate was filtered and

OCbz

thoroughly washed with water and cyclohexane to provide as a yellow solid the target derivative **11** (1.79 g, 57 %). C₁₃H₇BrO₃S (323.16). $R_f = 0.39$ (cyclohexane/EA = 7:3); ¹H-NMR (CDCl₃, 200 MHz): 7.19 (d, ³*J*=4.0 Hz, 1H, Hβ-thioph.), 7.41 (td, ³*J*=8.0 Hz, ⁴*J*=0.8 Hz, 1H, H6), 7.54 (d, ³*J*=8.4 Hz, 1H, H8), 7.71 (ddd, ³*J*=8.4 Hz, ³*J*=8.0 Hz, ⁴*J*=1.4 Hz, 1H, H7), 7.73 (d, ³*J*=4.0 Hz, 1H, Hα-thioph.), 8.22 (dd, ³*J*=8.0 Hz, ⁴*J*=1.4 Hz, 1H, H5); ¹³C-NMR (DMSO- d^6 , 50 MHz): δ = 112.2 (<u>Th</u>-Br), 117.8 (C8), 121.6 (Cα), 122.0 (C10), 122.9 (C6), 124.7 (C5), 129.3 (Cβ), 131.6 (C7), 136.1 (C2-<u>*Th*</u>), 141.6 (C3), 146.5 (C2), 153.3 (C9), 176.0 (C4); MS (ESI⁺, MeOH): *m/z*: 345.0, 347.0 [M+Na]⁺.

3-Benzyloxycarbonyloxy-2-(4-bromophenyl)-chromen-4-one (12): To a stirred suspension of **9** (500 mg, 1.58 mmol) in a mixture of CH₂Cl₂ (8 mL) and toluene (8 mL) at 0 °C, were added 18-crown-6 (7 mol %, 30 mg), a 25 % w/w aq. NaOH solution (1.6 mL) and benzyl chloroformate (338 μ L, 2.37 mmol). The reaction mixture was stirred overnight at rt. After carefully neutralizing by addition of 1 N aq. HCl (10 mL), the organic layer was extracted with CH₂Cl₂ (3 x), washed with brine, dried over MgSO₄, filtered and the volatiles were removed *in vacuo*. The

residue was purified by flash chromatography on silica gel eluted with toluene/Et₂O mixture (98:2 \rightarrow 85:15, v/v) to provide the desired compound **12** as a yellow solid (705 mg, 99 %). C₂₃H₁₅BrO₅ (451.27). $R_f = 0.58$ (toluene/Et₂O = 9:1); ¹H-NMR (CDCl₃, 200 MHz): $\delta = 5.17$ (s, 2H, CH₂), 7.22–7.33 (m, 6H, H6 & Cbz), 7.40 (d, ³*J*=8.4 Hz, 1H, H8), 7.45 (d, ³*J*=8.8 Hz, 1H, H_m-Ph), 7.57 (ddd, ³*J*=8.6, 7.0 Hz, ⁴*J*=1.6 Hz, 1H, H7), 7.62 (d, ³*J*=8.8 Hz, 1H, H_o-Ph), 8.13 (dd, ³*J*=8.0 Hz, ⁴*J*=1.4 Hz, 1H, H5); ¹³C-NMR (CDCl₃, 50 MHz): $\delta = 70.9$ (OC(O)<u>C</u>H₂Ph), 118.0 (C8), 123.4 (C10), 125.3 (C6), 125.9 (C5), 126.1 (C_p-Br), 128.1 (*m*-C_{Cbz}), 128.3 (*c*_{*i*}-Ph), 128.5 (*o*-C_{Cbz}), 128.6 (*p*-C_{Cbz}), 129.7 (*o*-C_{Ph}), 131.9 (*m*-C_{Ph}), 133.8 (C3), 134.1 (C7), 134.3 (*i*-C_{Cbz}), 152.0 (O<u>C</u>(O)CH₂Ph), 154.9 (C2), 155.2 (C9), 171.8 (C4); MS (ESI⁺, MeOH) *m/z*: 451.2, 453.2 [M+H]⁺, 473.1, 475.2 [M+Na]⁺, 489.2, 491.1 [M+K]⁺. HRMS (ESI⁺): *m/z* calcd for C₂₃H₁₆BrO₅: 451.0176 [M+H]⁺; found 451.0177.

3-Benzyloxycarbonyloxy-2-(5-bromofur-2-yl)-chromen-4-one (13): To a stirred suspension of **10** (600 mg, 1.95 mmol) in CH_2Cl_2 (8 mL) were added a 4.5 M aq. KOH solution (5 mL), 18-crown-6 (5 mol %, 26 mg) and benzyl chloroformate (420 μ L, 2.93 mmol). The reaction mixture became homogenous in 5 min and was stirred at rt for 1 h. After quenching by addition of H_2O (10 mL), the organic layer was extracted with CH_2Cl_2 (3 x), dried over MgSO₄, filtered and the volatiles were removed *in vacuo*. The residue was purified by flash chromatography on silica gel

eluted with with toluene/Et₂O mixture (99:1 \rightarrow 92:8, v/v) to provide the desired compound **13** as a brown solid (674 mg, 78 %). C₂₁H₁₃BrO₆ (441.23). $R_f = 0.54$ (toluene/Et₂O = 9:1). ¹H-NMR (CDCl₃, 200 MHz): $\delta = 5.35$ (s, 2H, CH₂), 6.53 (d, 1H, ³*J*=3.8 Hz, Hβ-fur), 7.12 (d, 1H, ³*J*=3.8 Hz, Hα-fur), 7.37–7.48 (m, 6H, H6 & Cbz), 7.57 (dd, ³*J*= 8.4 Hz, ⁴*J*=0.8 Hz, 1H, H8), 7.72 (ddd, ³*J*=8.6, 7.0 Hz, ⁴*J*=1.7 Hz, 1H, H7), 8.26 (dd, ³*J*=8.0 Hz, ⁴*J*=1.6 Hz, 1H, H5); ¹³C-NMR (CDCl₃, 50 MHz): $\delta = 71.2$ (OC(O)*C*H₂Ph), 114.6 (Cβ), 118.1 (C8), 118.9 (Cα), 123.8 (C10), 125.4 (C6), 126.0 (C5), 127.6 (*Fur*-Br), 128.4 (*o*-C_{Cbz}), 128.6 (*m*-C_{Cbz}), 128.7 (*p*-C_{Cbz}), 131.3 (C3), 134.1 (C7), 134.5 (*i*-C_{Cbz}), 145.1 (C2-*Fur*), 146.8 (C2), 152.1 (O*C*(O)CH₂Ph), 154.9 (C9), 171.5 (C4); MS (ESI⁺); *m/z* calcd for C₂₁H₁₃NaBrO₆: 462.9788 [M+H]⁺; found 462.9768.

3-Benzyloxycarbonyloxy-2-(5-bromothien-2-yl)-chromen-4-one (14): To a stirred suspension of **11** (1.05 g, 3.25 mmol) in CH_2Cl_2 (13 mL) were added a 4.5 M aq. KOH solution (9 mL), 18-crown-6 (5 mol %, 43 mg) and benzyl chloroformate (700 μ L, 4.88 mmol). The reaction mixture became homogenous in 5 min and was stirred at rt for 1 h. After quenching by addition of H_2O (10 mL), the organic layer was extracted with CH_2Cl_2 (3 x), dried over MgSO₄, filtered and the volatiles were removed in vacuo. The residue was purified by flash

chromatography on silica gel eluted with cyclohexane/EA mixture (9:1 \rightarrow 7:3, v/v) to provide the desired compound **14** as white crystals (1.20 g, 81 %). C₂₁H₁₃BrO₅S (457.29). $R_f = 0.53$ (cyclohexane/EA = 7:3); ¹H-NMR (CDCl₃, 200 MHz): $\delta = 5.37$ (s, 2H, CH₂), 7.16 (d, ³J=4.0 Hz, 1H, H\beta-thioph.), 7.34–7.50 (m, 6H, H6 & Cbz), 7.52 (dd, ³J=8.4 Hz, ⁴J=0.6 Hz, 1H, H8), 7.65 (d, ³J=4.0 Hz, 1H, H\alpha-thioph.), 7.72 (td, ³J=8.4 Hz, ⁴J=1.6 Hz, 1H, H8), 7.65 (d, ³J=4.0 Hz, 1H, H\alpha-thioph.), 7.72 (td, ³J=8.4 Hz, ⁴J=1.6 Hz, 1H, H8), 7.65 (d, ³J=4.0 Hz, 1H, H\alpha-thioph.), 7.72 (td, ³J=8.4 Hz, ⁴J=1.6 Hz, 1H, H8), 7.65 (d, ³J=4.0 Hz, 1H, H\alpha-thioph.), 7.72 (td, ³J=8.4 Hz, ⁴J=1.6 Hz, 1H, H8), 7.65 (d, ³J=4.0 Hz, 1H, H\alpha-thioph.), 7.72 (td, ³J=8.4 Hz, ⁴J=1.6 Hz, 1H, H8), 7.65 (d, ³J=4.0 Hz, 1H, H\alpha-thioph.), 7.72 (td, ³J=8.4 Hz, ⁴J=1.6 Hz, 1H, H8), 7.65 (d, ³J=4.0 Hz, 1H, H\alpha-thioph.), 7.72 (td, ³J=8.4 Hz, ⁴J=1.6 Hz, 1H, H8), 7.65 (d, ³J=4.0 Hz, 1H, H\alpha-thioph.), 7.72 (td, ³J=8.4 Hz, ⁴J=1.6 Hz, 1H, H8), 7.65 (d, ³J=4.0 Hz, 1H, H\alpha-thioph.), 7.72 (td, ³J=8.4 Hz, ⁴J=1.6 Hz, 1H, H8), 7.65 (d, ³J=4.0 Hz, 1H, H\alpha-thioph.), 7.72 (td, ³J=8.4 Hz, ⁴J=1.6 Hz, 1H, H8), 7.65 (d, ³J=4.0 Hz, 1H, H\alpha-thioph.), 7.72 (td, ³J=8.4 Hz, ⁴J=1.6 Hz, 1H, H8), 7.65 (d, ³J=4.0 Hz

Hz, 1H, H7), 8.25 (dd, ${}^{3}J$ =8.0 Hz, ${}^{4}J$ = 1.6 Hz, 1H, H5); 13 C-NMR (CDCl₃, 50 MHz): δ = 71.3 (OC(O)<u>C</u>H₂Ph), 117.8 (C8), 120.4 (<u>*Th*</u>-Br), 123.6 (C10), 125.4 (C6), 126.1 (C5), 128.4 (*o*-C_{Ph}), 128.7 (*m*-C_{Ph}), 128.8 (*p*-C_{Ph}), 131.0 (C β), 131.0 (C α), 131.5 (C2-<u>*Th*</u>), 132.0 (C3), 134.1 (C7), 134.5 (*i*-C_{Ph}), 150.3 (C2), 151.8 (O<u>C</u>(O)CH₂Ph), 155.0 (C9), 171.3 (C4); MS (ESI⁺, MeOH/CH₂Cl₂): *m/z*: 479.5, 481.5 [M+Na]⁺, 495.4, 497.4 [M+K]⁺. HRMS (ESI⁺): *m/z* calcd for C₂₁H₁₄BrO₅S: 456.9740 [M+H]⁺; found 456.9737.

3-((2-methoxyethoxy)methoxy)-2-(5-bromofur-2-yl)-chromen-4-one

(15): To a stirred solution of 10 (500 mg, 1.63 mmol) in DMF (3 mL) at 0 °C, were sequentially added K_2CO_3 (451 mg, 3.26 mmol) and 2-methoxyethoxymethyl chloride (MEMCl, 372 μ L, 3.26 mmol). The reaction mixture was stirred overnight at rt. After quenching by addition of H₂O (10 mL), the organic layer was extracted with CH₂Cl₂ (3 x), dried over MgSO₄, filtered and the volatiles were removed in vacuo. The residue was purified

by flash chromatography on silica gel eluted with cyclohexane/EA mixture (19:1 → 1:1, v/v) to provide the desired compound **15** as a brown solid (630 mg, 98 %). C₁₇H₁₅BrO₆ (395.20). R_f = 0.32 (cyclohexane/EA = 7:3); ¹H-NMR (CDCl₃, 200 MHz): δ = 3.28 (s, 3H, OCH₃), 3.42–3.47 (m, 2H, CH_{2B}), 3.82–3.86 (m, 2H, CH_{2A}), 5.46 (s, 2H, OCH₂O), 6.52 (d, 1H, ³J=3.6 Hz, Hβ-fur.), 7.35 (d, 1H, ³J=3.6 Hz, Hα-fur.), 7.30–7.38 (m, 1H, H6), 7.51 (dd, 1H, ⁴J=0.9 Hz, ³J=8.4 Hz, H8), 7.63 (ddd, 1H, ⁴J=1.8 Hz, ³J=7.0, 8.4 Hz, H7), 8.15 (dd, 1H, ⁴J=1.6 Hz, ³J=8.0 Hz, H5); ¹³C-NMR (CDCl₃, 50 MHz): δ = 59.0 (OCH₃), 69.7 (CH_{2A}), 71.6 (CH_{2B}), 96.6 (OCH₂O), 114.5 (Cβ), 118.0 (C8), 118.9 (Cα), 124.1 (C10), 124.9 (C6), 125.7 (C5), 126.2 (*Fur*-Br), 133.6 (C7), 135.9 (C3), 145.4 (C2-*Fur*), 146.1 (C2), 154.7 (C9), 173.8 (C4); MS (ESI⁺, MeOH) *m/z*: 416.9, 418.9 [M+Na]⁺. HRMS (ESI⁺): *m/z* calcd for C₁₇H₁₆BrO₆: 395.0130 [M+H]⁺; found 395.0127.

Preliminary approach for the final assembly via a Sonogashira coupling

3',5'-Di-O-acetyl-2'-deoxyuridine: DMAP (0.16 mmol, 20 mg) was added to a stirred suspension of 2'-deoxyuridine **16** (1 mmol, 228 mg) in acetic anhydride (7.5 mL). The reaction mixture became homogenous in 6 h, and then the volatiles were removed in vacuo. The residue was purified by flash chromatography on silica gel eluted with EA/cyclohexane (4:1 \rightarrow 19:1, v/v) to provide the desired product as a white resin (296 mg, 95 %). C₁₃H₁₆N₂O₇ (312.28). $R_f = 0.39$ (EA/cyclohexane = 9:1); ¹H-NMR (CDCl₃, 200 MHz): $\delta = 2.10$ (s, 3H, 3'-CH₃), 2.11 (s, 3H, 5'-CH₃), 2.10–2.23 (m, 1H, H2'), 2.53 (ddd, ³*J*=14.3, 5.7, 2.0 Hz, 1H, H2'), 4.23–4.41 (m, 3H, H5', H4'), 5.20 (dt, ³*J*=6.6, 2.1, 1.8 Hz, 1H, H3'), 5.79 (d, ³*J*=8.1 Hz, 1H, H5), 6.26

(dd, ${}^{3}J=8.4$, 5.6 Hz, 1H, H1'), 7.49 (d, ${}^{3}J=8.1$ Hz, 1H, H6), 9.66 (br s, 1H, NH); ${}^{13}C$ -NMR (CDCl₃, 50 MHz): $\delta = 20.7$ (CH₃), 20.8 (CH₃), 37.7 (C2'), 63.7 (C5'), 74.0 (C3'), 82.2 (C4'), 85.2 (C1'), 102.9 (C5), 138.8 (C6), 150.3 (C2), 163.4 (C4), 170.2 (5'-C=O), 170.3 (3'-C=O); MS (ESI⁺, MeOH) *m/z*: 335.3 [M+Na]⁺.

3',5'-Di-O-acetyl-5-iodo-2'-deoxyuridine (17): I₂ (3.46 mmol, 880 mg) and CAN (2.88 mmol, 1.58 g) were added to a stirred solution of the diacetate (5.77 mmol, 1.8 g) in acetonitrile (60 mL). The reaction mixture was refluxed for 1 h then cooled down to rt. The volatiles were removed *in vacuo* and the residue was dissolved in EA (60 mL). The organic solution was washed with water and brine, dried over MgSO₄, filtered and reduced under vacuum. The residue was purified by flash chromatography on silica gel eluted with cyclohexane/EA (1:1 \rightarrow 0:1, v/v) to provide the desired product **17** as a white solid (2.48 g, 98 %). C₁₃H₁₅IN₂O₇

(438.17). $R_f = 0.61$ (EA/cyclohexane = 4:1); ¹H-NMR (CDCl₃, 200 MHz): $\delta = 2.12$ (s, 3H, 3'-CH₃), 2.13–2.24 (m, 1H, H2'_A), 2.21 (s, 3H, 5'-CH₃), 2.54 (ddd, ³*J*=14.3, 5.6, 2.0 Hz, 1H, H2'_B), 4.30 (m, 1H, H4') 4.37 (ddd, ³*J*=20.0, 12.6, 1.7 Hz, 1H, H5'), 5.23 (dt, ³*J*=6.4, 2.0 Hz, 1H, H3'), 6.29 (dd, ³*J*=8.2, 5.6 Hz, 1H, H1'), 7.97 (s, 1H, H6), 8.81 (br s, 1H, NH); ¹³C-NMR (CDCl₃, 50 MHz): $\delta = 20.8$ (3'-CH₃), 21.0 (5'-CH₃), 38.1 (C2'), 63.7 (C5'), 69.0 (C5), 74.0 (C3'), 82.5 (C4'), 85.4 (C1'), 143.8 (C6), 150.0 (C2), 160.0 (C4), 170.1 (5'-C=O), 170.3 (3'-C=O); MS (ESI⁺, MeOH) *m/z*: 461.2 [M+Na]⁺, 899.2 [2M+Na]⁺.

3',5'-Di-O-acetyl-5-trimethylsilylethynyl-2'-deoxyuridine: To a stirred solution of **17** (4.56 mmol, 2.00 g, previously azeotropically coevaporated with dry pyridine) in THF (23 mL) under argon, TMS-acetylene (2 eq., 9.13 mmol, 1.30 mL), Pd(PPh₃)₄ (6 mol %, 0.27 mmol, 316 mg), CuI (5 mol %, 0.23 mmol, 43 mg) and NEt₃ (5 eq, 22.82 mmol, 3.16 mL) were added. The reaction mixture was refluxed for 30 min then cooled down to rt, filtered through a Celite[®] 545 pad and the volatiles were evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel eluted with cyclohexane/EA (1:0 \rightarrow 1:1, v/v) to provide the desired compound as a beige solid (1.75 g, 4.29 mmol, 94 %). C₁₈H₂₄N₂O₇Si (408.48). *R_f* = 0.35

Cyclohexane/EA = 1:1). ¹H-NMR (CDCl₃, 200 MHz): $\delta = 0.16$ (s, 9H, SiCH₃), 2.08 (s, 3H, 3'-CH₃), 2.08–2.24 (m, 1H, H2'_A), 2.14 (s, 3H, 5'-CH₃), 2.50 (ddd, ³*J*=14.2, 5.8, 2.2 Hz, 1H, H2'_B), 4.26 (t, ³*J*=2.6 Hz, 1H, H4'), 4.32 (d, ³*J*=2.6 Hz, 2H, H5'), 5.14–5.30 (m, 1H, H3'), 6.29 (dd, ³*J*=7.8, 6.0 Hz, 1H, H1'), 7.80 (s, 1H, H6), 9.83 (s, 1H, NH); ¹³C-NMR (CDCl₃, 50 MHz): $\delta = -0.3$ (SiMe₃), 20.7 (3'-CH₃), 20.8 (5'-CH₃), 38.1 (C2'), 63.7 (C5'), 73.9 (C3'), 82.4 (C4'), 85.2 (C1'), 95.1 (*C*=C-TMS), 99.6 (C=*C*-TMS), 100.8 (C5), 142.1 (C6), 149.3 (C2), 161.1 (C4), 170.0 (5'-C=O), 170.3, (3'-C=O); MS (ESI⁺, MeOH) *m/z*: 430.7 [M+Na]⁺.

3',5'-Di-O-acetyl-5-ethynyl-2'-deoxyuridine (18): TBAF (4.1 mL mL, 1.0 M in THF) was added to a stirred solution of the silylated alkyne (4.29 mmol, 1.75 g) in THF (20 mL). After 20 min, the resulting mixture was concentrated *in vacuo* and the residue was purified by flash chromatography on silica gel eluted with cyclohexane/EA (1:1 \rightarrow 1:9, v/v) to provide the desired compound **18** as a white solid (1.4 g, 4.16 mmol, 97 %). C₁₅H₁₆N₂O₇ (336.30). R_f = 0.15 (cyclohexane/EA = 1:1); ¹H-NMR (CDCl₃, 200 MHz): δ = 2.12 (s, 3H, 3'-CH₃), 2.17 (s, 3H, 5'-CH₃), 2.17–2.27 (m, 1H, H2'_{A)}, 2.56 (ddd, ²*J*=14.3 Hz, ³*J*=5.8, 2.4 Hz, 1H, H2'_B), 3.20 (s, 1H, C=CH), 4.21–4.48 (m, 3H, H4', H5'), 5.17–5.28 (m, 1H, H3'), 6.30 (dd. ³*J*=7.8, 5.9)

C=CH), 4.21–4.48 (m, 3H, H4', H5'), 5.17–5.28 (m, 1H, H3'), 6.30 (dd, ${}^{3}J$ =7.8, 5.9 Hz, 1H, H1'), 7.91 (s, 1H, H6), 13 C-NMR (CDCl₃, 50 MHz): δ = 20.8 (CH₃), 20.8 (CH₃), 38.3 (C2'), 63.7 (C5'), 73.9 (C3'), 74.5 (C=<u>C</u>H), 82.2 (<u>C</u>=CH), 82.6 (C4'), 85.5 (C1'), 99.6 (C5), 142.7 (C6), 149.1 (C2), 161.1 (C4), 170.1 (5'-C=O), 170.4 (3'-C=O); MS (ESI⁺, MeOH/DCM) *m/z*: 337.0 [M+H]⁺, 359.0 [M+Na]⁺.

3',5'-Di-*O*-acetyl-5-(5-(3-((2-methoxyethoxy)methoxy)-4-oxo-chromen-2-yl)fur-2-yl)ethynyl-2'-deoxyuridine (19): To a stirred solution of the chromone derivative **15** (1.0 mmol, 359 mg) and the nucleoside derivative **18** (306 mg, 0.91 mmol) in DMF (9 mL) under argon, NEt₃ (5 eq, 589 μ L, 4.55 mmol), Pd(PPh₃)₄ (7 mol %), and CuI (7 mol %) were sequentially added. The mixture was warmed for 4 h at 60 °C and then cooled down to rt. The volatiles were removed *in vacuo* and the resulting crude was purified by flash chromatography on silica gel eluted with cyclohexane/EA (1:1 \rightarrow 1:4, v/v) to give a mixture of two compounds which was further purified by reverse phase chromatography eluted with water/acetone, (2 :3, v/v) to provide the desired compound **19** as a yellow solid (178 mg, 30 %) and the 5-*endo*-dig cyclized product **20** as an orange solid (154 mg, 26 %). C₃₂H₃₀N₂O₁₃ (650.59). $R_f = 0.4$ (cyclohexane/EA = 1:4). ¹H-NMR (CDCl₃, 200 MHz): $\delta = 2.12$ (s, 3H, CH₃), 2.21–2.35 (m,

1H, H2'_A), 2.28 (s, 3H, CH₃), 2.60 (ddd, ²*J*=14.3 Hz, ³*J*=5.8, 2.6 Hz, 1H, H2'_B), 3.32 (s, 3H, OCH₃), 3.46–3.51 (m, 2H, CH_{2B}), 3.85–3.89 (m, 2H, CH_{2A}), 4.29–4.36 (m, 1H, H4'), 4.36–4.44 (m, 2H, H5'), 5.24–5.29 (m, 1H, H3'), 5.52 (s, 2H, OCH₂O), 6.34 (dd, ³*J*=7.3, 6.1 Hz, 1H, H1'), 6.86 (d, ³*J*=3.7 Hz, 1H, Hβ-fur.), 7.39 (ddd, ³*J*=7.9, 6.8 Hz, ⁴*J*=1.4 Hz, 1H, H6''), 7.46 (d, ³*J*=3.7 Hz, 1H, Hα-fur.), 7.61 (d, ³*J*=8.4 Hz, 1H, H8''), 7.69 (ddd, ³*J*=8.4, 6.8 Hz, ⁴*J*=1.6 Hz, 1H, H7''), 8.06 (s, 1H, H6), 8.20 (dd, ³*J*=7.9 Hz, ⁴*J*=1.1 Hz, 1H, H5''), 9.35 (br. s, 1H, NH); ¹³C-NMR (CDCl₃, 125 MHz): $\delta = 20.8$ (C(O)CH₃), 20.9 (C(O)CH₃), 38.4 (C2'), 58.9 (OCH₃), 63.7 (C5'), 69.7 (CH_{2A}), 71.6 (CH_{2B}), 73.7 (C3'), 82.7 (C4'), 83.2 (Fur-C=C-), 85.7 (C1'), 87.0 (Fur-C=C-), 96.6 (OCH₂O), 99.6 (C5), 117.8 (Cα), 118.0 (C8''), 118.4 (Cβ), 124.1 (C10''), 124.9 (C6''), 125.7 (C5''), 133.7 (C7''), 136.7 (C3''), 138.4 (*Eur*-C=C-), 142.5 (C6), 145.0 (C2''-*Fur*), 146.8 (C2''), 148.9 (C2), 154.8 (C9''), 160.4 (C4), 170.2 (C=O), 170.3 (C=O), 173.9 (C4''); MS (ESI⁺, MeOH) *m/z*: 673.1 [M+Na]⁺. HRMS (ESI⁺): *m/z* calcd for C₃₂H₃₁N₂O₁₃: 651.1826 [M+H]⁺; found 651.1820.

3-(2'-deoxy-3',5'-di-*O*-acetyl-β-D-ribofuranosyl-1')-6-[5-(3-((2-methoxyethoxy)methoxy)-4-oxo-chromen-2-yl)fur-2-yl]-2,3-

dihydrofuro[2,3-*d*]pyrimidin-2-one (20): See above procedure since 20 was obtained as a side product. 20 can be derived from 19 via a 5endo-dig-cyclization according to the protocol herein. To a stirred solution of the coupled derivative (400 mg, 0.615 mmol) in a mixture of THF/NEt₃ (15:13 mL), CuI (117 mg, 0.615 mmol) was portionwise added. The reaction mixture was stirred at 70 °C for 4 h and then cooled down to rt. The volatiles were removed *in vacuo*. The residue was purified by flash chromatography on silica gel eluted with cyclohexane/EA (1:1 \rightarrow 1:4, v/v) to provide the cyclized compound 20 as a yellow solid (380 mg, 95 %). C₃₂H₃₀N₂O₁₃ (650.59). $R_f = 0.33$ (cyclohexane/EA = 1:19). ¹H-NMR (CDCl₃, 200 MHz): $\delta = 2.09$ (s,

3H, CH₃), 2.09–2.17 (m, 1H, H2'), 2.13 (s, 3H, CH₃), 3.01 (ddd, ${}^{2}J=14.3$ Hz, ${}^{3}J=5.5$, 2.2 Hz, 1H, H2'_B), 3.31 (s, 3H, OCH₃), 3.46–3.50 (m, 2H, CH_{2B}), 3.86–3.91 (m, 2H, CH_{2A}), 4.40–4.48 (m, 3H, H4', H5'), 5.20–5.28 (m, 1H, H3'), 5.54 (s, 2H, OCH₂O), 6.32 (dd, ${}^{3}J=7.4$, 5.6 Hz, 1H, H1'), 6.92 (s, 1H, H9), 7.04 (d, ${}^{3}J=3.7$ Hz, 1H, H 5 fur.), 7.41 (ddd, ${}^{3}J=8.0$, 7.0 Hz, ${}^{4}J=1.1$ Hz, 1H, H6''), 7.55 (d, ${}^{3}J=3.7$ Hz, 1H, H ${}^{-1}$ cur.), 7.58 (d, ${}^{3}J=8.3$ Hz, 1H, H8''), 7.71 (ddd, ${}^{3}J=8.3$, 7.0 Hz, ${}^{4}J=1.5$ Hz, 1H, H7''), 8.22 (dd, ${}^{3}J=8.0$ Hz, ${}^{4}J=1.5$ Hz, 1H, H5''), 8.41 (s, 1H, H6'); ¹³C-NMR (CDCl₃, 125 MHz): $\delta = 20.9$ (C(O)CH₃), 20.9 (C(O)CH₃), 39.4 (C2'), 59.0 (OCH₃), 63.7 (C5'), 69.7 (CH_{2A}), 71.6 (CH_{2B}), 74.0 (C3'), 83.5 (C4'), 88.8 (C1'), 96.8 (OCH₂O), 99.3 (C9), 107.4 (C5), 112.3 (C α), 117.9 (C8''), 118.5 (C β), 124.2 (C10''), 125.0 (C6''), 125.8 (C5''), 133.7 (C7''), 135.6 (*<u>Fur</u>-C8), 136.9 (C3''), 145.7 (C2''-<u>Fur</u>), 146.0 (C6), 146.6 (C8), 146.8 (C2''), 154.2 (C2), 154.7 (C9''), 170.3 (C=O), 170.4 (C=O), 171.7 (C4), 173.8 (C4''); MS (ESI⁺, MeOH) <i>m/z*: 673.1 [M+Na]⁺. HRMS (ESI⁺): *m/z* calcd for C₃₂H₃₁N₂O₁₃: 651.1826 [M+H]⁺; found 651.1821.

Preparation of the fluorescent emissive nucleosides 2, 3 and 4

3',5'-Di-O-acetyl-3-*N***-(4-methylbenzoyl)-5-ethynyl-2'-deoxyuridine** (21): *p*-Toluoyl chloride (0.36 mmol, 0.05 mL) and NEt(iPr)₂ (0.9 mmol, 0.15 mL) were added to a stirred solution of **18** (0.3 mmol, 100 mg) in pyridine (3 mL). The reaction mixture was stirred for 5 h at rt, and then the volatiles were reduced *in vacuo*. The residue was purified by flash chromatography on silica gel eluted with cyclohexane/EA (9:1 \rightarrow 1:4, v/v) to provide the desired compound **21** as a beige powder (111 mg, 82 %). C₂₃H₂₂N₂O₈ (454.43). *R*_f = 0.42 (cyclohexane/EA = 1:1); ¹H-NMR (CDCl₃, 200 MHz): δ = 2.08 (s, 3H, CH₃), 2.18 (s, 3H, CH₃), 2.28 (dd, ²*J*=14.4 Hz, ³*J*=7.4 Hz, 1H, H2'_A), 2.43 (s, 3H, *p*-CH₃), 2.56 (ddd, ²*J*=14.4 Hz,

 ${}^{3}J=5.8, 2.6$ Hz, 1H, H2′_B), 3.20 (s, 1H, C≡CH), 4.28–4.32 (m, 1H, H4′), 4.32–4.45 (m, 1H, H5′), 5.24 (dt, ${}^{3}J=6.6, 2.6$ Hz, 1H, H3′), 6.29 (dd, ${}^{3}J=7.6, 6.0$ Hz, 1H, H1′), 7.28 (d, ${}^{3}J=8.2$ Hz, 2H, H_m-Tol), 7.80 (d, ${}^{3}J=8.2$ Hz, 2H, H_o-Tol), 7.99 (s, 1H, H6); 13 C-NMR (CDCl₃, 50 MHz): $\delta = 20.8$ (C(O)<u>C</u>H₃), 20.8 (C(O)<u>C</u>H₃), 21.9 (CH₃-Tol), 38.3 (C2′), 63.6 (C5′), 73.7 (C3′), 74.1 (C≡<u>C</u>H), 82.6 (<u>C</u>≡CH), 82.7 (C4′), 85.8 (C1′), 99.6 (C5), 128.4 (C_i-Tol), 129.9 (C_m-Tol), 130.7 (C_o-Tol), 142.3 (C6), 146.8 (C_p-Tol), 148.1 (C2), 160.1 (C4), 167.1 (C=O-Tol), 170.1 (C=O), 170.3 (C=O); MS (ESI⁺, MeOH/DCM) *m/z:* 454.9 [M+H]⁺, 477.1 [M+Na]⁺. HRMS (ESI⁺): *m/z* calcd for C₂₃H₂₃N₂O₈: 455.1454 [M+H]⁺; found 455.1450.

3',5'-Di-O-acetyl-4-(5-(3-(benzyloxycarbonyloxy)-4-oxochromen-2-yl)phenyl)ethynyl-3-N-(4-methylbenzoyl)-2'-

deoxyuridine (22): To a stirred solution of the chromone derivative **12** (0.363 mmol, 172 mg) and the nucleoside derivative **21** (0.242 mmol, 110 mg) in THF (5.5 mL) under argon, NEt₃ (5 eq, 163 μ L, 1.21 mmol), Pd(PPh₃)₂Cl₂ (7 mol %) and CuI (7 mol %) were sequentially added. The mixture was warmed for 2 h at 60 °C then cooled down to rt. The volatiles were removed *in vacuo* and the resulting crude was purified by flash chromatography on silica gel eluted with toluene/EA (7:3 \rightarrow 5:5, v/v) to provide the desired compound **22** as a yellow solid (120

mg, 60 %). $C_{46}H_{36}N_2O_{13}$ (824.78). $R_f = 0.26$ (toluene/EA = 4:1). 2.12 (s, 3H, CH₃), 2.22 (s, 3H, CH₃), 2.28–2.39 (dd, ²*J*=14.3 Hz, ³*J*=7.0 Hz, 1H, H2'_A), 2.44 (s, 3H, CH₃(Tol)), 2.61 (ddd, ²*J*=14.3 Hz, ³*J*=5.8, 2.4 Hz, 1H, H2'_B), 4.31–4.38 (m, 1H, H4'), 4.40–4.47 (m, 2H, H5'), 5.28 (s, 2H, CH₂), 5.28–5.33 (m, 1H, H3'), 6.34 (dd, ³*J*=7.4, 5.8 Hz, 1H, H1'), 7.32 (d, ³*J*=8.1 Hz, 2H, H_m-Tol), 7.36–7.41 (m, 5H, Cbz), 7.45 (ddd, ³*J*=8.0, 7.1 Hz, ⁴*J*=1.0 Hz, 1H, H6''), 7.56 (d, ³*J*=8.5 Hz, 2H, H_m-Ph), 7.57 (d, ³*J*=8.5 Hz, 1H, H8''), 7.74 (ddd, ³*J*=8.5, 7.1 Hz, ⁴*J*=1.6 Hz, 1H, H7''), 7.85 (d, ³*J*=8.1 Hz, 2H, H_o-Tol), 7.88 (d, ³*J*=8.5 Hz, 2H, H_o-Ph), 8.04 (s, 1H, H6), 8.28 (dd, ³*J*=8.0 Hz, ⁴*J*=1.6 Hz, 1H, H5''); ¹³C NMR (CDCl₃, 50 MHz): $\delta = 20.8$ (C(O)<u>C</u>H₃), 20.9 (C(O)<u>C</u>H₃), 21.9 (CH₃-Tol), 38.4 (C2'), 63.7 (C5'), 71.1 (OC(O)<u>C</u>H₂Ph), 73.7 (C3'), 82.6 (Ph-C≡<u>C</u>-), 82.8 (C4'), 85.9 (C1'), 93.5 (Ph-<u>C</u>≡C-), 100.5 (C5), 118.1 (C8''), 123.6 (C10''), 125.4 (C_p-Ph), 125.4 (C6''), 126.1 (C5''), 128.3 (o-C_{cbz}), 128.4 (C_o-Ph), 134.1 (C3''), 134.2 (*i*-C_{cbz}), 134.4 (C7''), 141.3 (C6), 146.9 (C_p-Tol), 148.1 (C2), 152.2 (O<u>C</u>(O)CH₂Ph), 155.1 (C2''), 155.5

3',5'-Di-*O*-acetyl-5-(5-(3-(benzyloxycarbonyloxy)-4-oxo-chromen-2-yl)fur-2-yl)ethynyl-3-*N*-(4-methylbenzoyl)-2'-deoxyuridine

(23): To a stirred solution of the chromone derivative 13 (0.238 mmol, 110 mg) and the nucleoside derivative 21 (0.198 mmol, 90 mg) in THF (4.5 mL) under argon, NEt₃ (5 eq, 162 µL, 0.99 mmol), Pd(PPh₃)₂Cl₂ (7 mol %), and CuI (7 mol %) were sequentially added. The mixture was warmed for 2 h at 60 °C and then cooled down to rt. The volatiles were removed *in vacuo* and the resulting crude was purified by flash chromatography on silica gel eluted with toluene/EA (95:5 \rightarrow 7:3, v/v) to provide the desired compound 23 as a yellow solid (132 mg, 82 %). C₄₄H₃₄N₂O₁₄ (814.75). *R*_f = 0.26 (toluene/EA = 4:1). ¹H-NMR (CDCl₃, 200 MHz): δ = 2.12 (s, 3H, CH₃), 2.24–2.38 (m, 1H, H2'_A), 2.28 (s, 3H, CH₃), 2.45 (s, 3H, CH₃(Tol)), 2.61 (ddd, ²*J*=14.4 Hz, ³*J*=5.9, 2.9 Hz, 1H, H2'_B), 4.30–

4.38 (m, 1H, H4'), 4.38–4.45 (m, 2H, H5'), 5.25–5.31 (m, 1H, H3'), 5.34 (s, 2H, CH₂), 6.33 (dd, ${}^{3}J$ =7.2, 6.2 Hz, 1H, H1'), 6.79 (d, ${}^{3}J$ =3.8 Hz, 1H, Hβ-thioph.), 7.16 (d, ${}^{3}J$ =4.0 Hz, 1H, Hα-thioph.), 7.28 (d, ${}^{3}J$ =8.2 Hz, 2H, H_m-Tol), 7.34–7.48 (m, 6H, H6", Cbz), 7.63 (d, ${}^{3}J$ =7.8 Hz, 1H, H8"), 7.74 (ddd, ${}^{3}J$ =8.4, 6.8 Hz, ${}^{4}J$ =1.4 Hz, 1H, H7"), 7.84 (d, ${}^{3}J$ =8.2 Hz, 2H, H_o-Tol), 8.13 (s, 1H, H6), 8.26 (dd, ${}^{3}J$ =7.9 Hz, ${}^{4}J$ =1.5 Hz, 1H, H5"); 13 C-NMR (CDCl₃, 50 MHz): δ = 20.8 (C(O)<u>C</u>H₃), 20.9 (C(O)<u>C</u>H₃), 21.9 (CH₃-Tol), 38.4 (C2'), 63.6 (C5'), 71.2 (OC(O)<u>C</u>H₂Ph), 73.5 (C3'), 82.8 (C4'), 83.2 (Fur-<u>C</u>=C-), 86.0 (C1'), 87.0 (Fur-C=<u>C</u>-), 99.4 (C5), 117.9 (Cα), 118.1 (C8"), 118.4 (Cβ), 123.7 (C10"), 125.4 (C6"), 125.9 (C5"), 128.3 (o-C_{Cbz}), 128.3 (C₁-Tol), 128.6 (m-C_{Cbz}), 128.7 (p-C_{Cbz}), 130.0 (C_m-Tol), 130.7 (C_o-Tol), 132.0 (C3"), 134.3 (C7"), 134.5 (i-C_{Cbz}), 139.3 (C2"-<u>Fur</u>), 142.3 (C6), 143.7 (<u>Fur</u>-C=C-), 146.8 (C2"), 147.0 (C_p-Tol), 148.0 (C2), 151.9 (O<u>C</u>(O)CH₂Ph), 155.0 (C9"), 159.4 (C4), 167.0 (C=O-Tol), 170.1 (C=O), 170.3 (C=O), 171.4 (C4"); MS (ESI⁺, MeOH) *m/z*: 815.5 [M+H]⁺, 837.4 [M+Na]⁺, 853.4 [M+K]⁺. HRMS (ESI⁺): *m/z* calcd for C₄₄H₃₄N₂NaO₁₄: 837.1902 [M+Na]⁺; found 837.1895.

3',5'-Di-*O*-acetyl-5-(5-(3-(benzyloxycarbonyloxy)-4-oxo-chromen-2-yl)thien-2-yl)ethynyl-3-*N*-(4-methylbenzoyl)-2'-deoxyuridine

(24): To a stirred solution of the chromone derivative 14 (0.26 mmol, 120 mg) and the acetylenic nucleoside 21 (0.24 mmol, 108 mg) in THF (2 mL) under argon, NEt₃ (5 eq, 162 μ L, 1.2 mmol), Pd(PPh₃)₂Cl₂ (7 mol %), and CuI (7 mol %) were sequentially added. The mixture was warmed for 2 h at 60 °C and then cooled down to rt. The volatiles were reduced *in vacuo* and the resulting crude was purified by flash chromatography on silica gel eluted with cyclohexane/EA (7:3 \rightarrow 1:1, v/v) to provide the desired compound 24 as yellow solid (173 mg, 87 %). C₄₄H₃₄N₂O₁₃S (830.81). *R_f* = 0.34 (cyclohexane/EA = 1:1); ¹H-NMR (CDCl₃, 200 MHz): δ = 2.11 (s, 3H, CH₃), 2.19 (s, 3H, CH₃), 2.33 (ddd, ²*J*=14.4 Hz, ³*J*=7.4, 7.0 Hz, 1H, H2'_A), 2.44 (s, 3H, CH₃(Tol)), 2.61 (ddd, ²*J*=14.4 Hz, ³*J*=6.0, 2.8 Hz, 1H, H2'_B), 4.30–4.37 (m, 1H, H4'), 4.37–4.45 (m, 2H, H5'), 5.23–

5.32 (m, 1H, H3'), 5.37 (s, 2H, CH₂), 6.33 (dd, ${}^{3}J$ =7.4, 6.0 Hz, 1H, H1'), 7.27 (d, ${}^{3}J$ =4.0 Hz, 1H, Hβ-thioph.), 7.28 (d, ${}^{3}J$ =8.2 Hz, 2H, H_m-Tol), 7.32–7.51 (m, 6H, H6", Cbz), 7.52 (d, ${}^{3}J$ =8.5 Hz, 1H, H8"), 7.72 (ddd, ${}^{3}J$ =8.5, 7.0 Hz, ${}^{4}J$ =1.6 Hz, 1H, H7"), 7.77 (d, ${}^{3}J$ =4.0 Hz, 1H, H α -thioph.), 7.84 (d, ${}^{3}J$ =8.2 Hz, 2H, H_o-Tol), 8.05 (s, 1H, H6), 8.24 (dd, ${}^{3}J$ =7.9 Hz, ${}^{4}J$ =1.5 Hz, 1H, H5"); 13 C-NMR (CDCl₃, 50 MHz): δ = 20.8 (C(O)<u>C</u>H₃), 20.9 (C(O)<u>C</u>H₃), 21.9 (CH₃-Tol), 38.4 (C2'), 63.6 (C5'), 71.4 (OC(O)<u>C</u>H₂Ph), 73.6 (C3'), 82.8 (C4'), 86.0 (C1'), 86.5 (Th-<u>C</u>=C-), 87.4 (Th-C=<u>C</u>-), 100.1 (C5), 117.9 (C8"), 123.6 (C10"), 125.4 (C6"), 126.0 (C5"), 128.4 (o-C_{cbz}),

128.4 (C_{*i*}-Tol), 128.7 (*m*-C_{Cbz}), 128.8 (C2-<u>*Th*</u>), 128.8 (*p*-C_{Cbz}), 130.0 (C_{*m*}-Tol), 130.7 (C_{*o*}-Tol), 130.7 (Cα), 132.0 (C3''), 132.1 (<u>*Th*</u>-C≡C-), 133.2 (Cβ), 134.2 (C7''), 134.4 (*i*-C_{Cbz}), 141.7 (C6), 147.0 (C_{*p*}-Tol), 148.0 (C2), 150.4 (C2''), 151.8 (O<u>C</u>(O)CH₂Ph), 155.0 (C9''), 159.6 (C4), 167.1 (C=O-Tol), 170.0 (C=O), 170.3 (C=O), 171.3 (C4''); HRMS (ESI⁺): *m/z* calcd for C₄₄H₃₅N₂O₁₃S: 831.1854 [M+H]⁺; found 831.1854.

5-(5-(3-Hydroxy-4-oxo-chromen-2-yl)phenyl)ethynyl-2'-

deoxyuridine (2: PCU): To a stirred solution of **22** (0.024 mmol, 20 mg) in MeOH (1.4 mL) was dropwise added a 33 % ammonium hydroxide aq. solution (900 μ L). Protected from light, the reaction mixture was stirred at rt for 6 h and then acidified with AcOH (900 μ L). After addition of 6.5 mL of milliQ water, the resulting solution was stored 12 h at 0 °C. The heterogeneous mixture was centrifuged for settling solid particles and the supernatant was carefully taken out with a syringe with a fine needle. The precipitate was triturated with a solution of MeOH/H₂O (7:3) and after centrifugation, the supernatant was removed by suction. The final product was partially solubilized in water (300 μ L). The resulting solution was frozen and lyophilized to provide the desired compound **2 (PCU)** as an orange solid (6 mg, 50 %). C₂₆H₂₀N₂O₈ (488.45). $R_f = 0.65$ (DCM/MeOH = 9:1). ¹H-NMR

⁷⁰). C₂₆H₂₀N₂O₈ (488.43). $K_f = 0.63$ (DCM/MeOH = 9.1). H-INIK (DMSO- d^6 , 500 MHz): $\delta = 2.14-2.18$ (m, 1H, H2'_A), 2.21 (dd, ²*J*=13.5 Hz, ³*J*=6.5 Hz, 1H, H2'_B), 3.60 (ddd, ²*J*=12.0 Hz, ³*J*=5.0, 3.5 Hz, 1H, H5'_A), 3.68 (ddd, ²*J*=12.0 Hz, ³*J*=5.0, 3.5 Hz, 1H, H5'_B), 3.81–3.83 (q, ³*J*=3.5 Hz, 1H, H4'), 4.26–4.29 (m, 1H, H3'), 5.19 (t, ³*J*=5.0 Hz, 1H, 5'-OH), 5.27 (d, ³*J*=4.0 Hz, 1H, 3'-OH), 6.14 (t, ³*J*=6.5 Hz, 1H, H1'), 7.48 (td, ³*J*=8.0 Hz, ⁴*J*=1.5 Hz, 1H, H6"), 7.66 (d, ³*J*=8.5 Hz, 2H, H_{m-Ph}), 7.79 (d, ³*J*=8.0 Hz, 1H, H8"), 7.83 (td, ³*J*=8.0 Hz, ⁴*J*=1.5 Hz, 1H, H7"), 8.13 (dd, ³*J*=8.0 Hz, ⁴*J*=1.5 Hz, 1H, H5"), 8.29 (d, ³*J*=8.5 Hz, 2H, H_{o-Ph}), 8.45 (s, 1H, H6), 9.87 (s, 1H, 3"-OH), 11.73 (s, 1H, NH); ¹³C-NMR (DMSO- d^6 , 125 MHz): $\delta = 40.1$ (C2'), 60.7 (C5'), 69.8 (C3'), 84.6 (Ph-C≡<u>C</u>-), 84.8 (C4'), 87.5 (C1'), 91.6 (Ph-<u>C</u>≡C-), 97.8 (C5), 118.4 (C8"), 121.2 (C10"), 123.5 (C6"), 124.5 (C_{*i*-Ph}), 124.7 (C5"), 127.6 (C_{o-Ph}), 131.1 (C_{*p*-Ph}), 131.1 (C_{*m*-Ph}), 133.8 (C7"), 139.5 (C3"), 144.0 (C2), 144.2 (C6), 149.3 (C2"), 154.5 (C9"), 161.3 (C4), 172.9 (C4"); MS (ESI⁺, MeOH) *m*/*z*: 489.4 [M+H]⁺, 511.3 [M+Na]⁺. HRMS (ESI⁺): *m*/*z* calcd for C₂₆H₂₁N₂O₈: 489.1292 [M+H]⁺; found 489.1294.

5-(5-(3-Hydroxy-4-oxo-chromen-2-yl)fur-2-yl)ethynyl-2'-deoxyuridine

(3: FCU): To a stirred solution of 23 (0.049 mmol, 40 mg) in MeOH (3 mL) was dropwise added a 33 % ammonium hydroxide aq. solution (1.8 mL). Protected from light, the reaction mixture was stirred at rt for 4 h and then acidified with AcOH (1.7 mL). After addition of 13 mL of milliQ water, the resulting solution was stored 12 h at 0 °C. The heterogeneous mixture was centrifuged for settling solid particles and the supernatant was carefully taken out with a syringe with a fine needle. The precipitate was triturated with a solution of MeOH/H₂O (7:3), and after centrifugation the supernatant was removed by suction. The final product was partially solubilized in water (300 µL). The resulting solution was frozen and lyophilized to provide the desired compound 3 (FCU) as an orange solid (14 mg, 58 %). C₂₄H₁₈N₂O₉ (478.41). R_f = 0.42 (DCM/MeOH = 9:1). ¹H-NMR (DMSO-*d*⁶, 500 MHz): δ = 2.14–2.20 (m, 1H, H2'_A), 2.22 (dd,

NMR (DMSO-*d*⁶, 500 MHz): $\delta = 2.14-2.20$ (m, 1H, H2'_A), 2.22 (dd, ²*J*=13.7 Hz, ³*J*=6.3 Hz, 1H, H2'_B), 3.59 (ddd, ²*J*=11.8 Hz, ³*J*=4.5, 3.5 Hz, 1H, H5'_A), 3.67 (ddd, ²*J*=11.8 Hz, ³*J*=4.5, 3.5 Hz, 1H, H5'_B), 3.82 (q, ³*J*=3.5 Hz, 1H, H4'), 4.24–4.28 (m, 1H, H3'), 5.18 (t, ³*J*=5.0 Hz, 1H, 5'-OH), 5.27 (d, ³*J*=4.5 Hz, 1H, 3'-OH), 6.13 (t, ³*J*=6.3 Hz, 1H, H1'), 7.11 (d, ³*J*=3.5 Hz, 1H, Hβ-thioph.), 7.33 (d, ³*J*=3.5 Hz, 1H, Hα-thioph.), 7.48 (ddd, ³*J*=8.0, 5.5 Hz, ⁴*J*=2.5 Hz, 1H, H6''), 7.78–7.82 (m, 2H, H8'', H7''), 8.12 (dd, ³*J*=8.0 Hz, ⁴*J*=1.0 Hz, 1H, H5''), 8.50 (s, 1H, H6), 10.28 (s, 1H, 3''-OH), 11.80 (s, 1H, NH); ¹³C-NMR (DMSO *d*⁶, 125 MHz): $\delta = 40.2$ (C2'), 60.7 (C5'), 69.8 (C3'), 81.5 (Fur-<u>C</u>=C-), 85.0 (C1'), 87.6 (C4'), 89.1 (Fur-C=<u>C</u>-), 96.8 (C5), 116.2 (Cα), 118.3 (Cβ), 118.4 (C8''), 121.8 (C10''), 124.7 (C6''), 124.8 (C5''), 133.7 (C7''), 137.2 (C3''), 138.0 (<u>*Fur*-C=</u>C-), 138.2 (C2''-<u>*Fur*</u>), 145.0 (C6), 145.0 (C2''), 149.2 (C2), 154.1 (C9''), 161.1 (C4), 171.8 (C4''); MS (ESI⁺, MeOH) *m/z*: 479.1 [M+H]⁺, 501.3 [M+Na]⁺. HRMS (ESI⁺): *m/z* calcd for C₂₄H₁₉N₂O₉: 479.1085 [M+H]⁺; found 479.1084.

5-(5-(3-Hydroxy-4-oxo-chromen-2-yl)thien-2-yl)ethynyl-2'-

deoxyuridine (4: TCU): To a stirred suspension of **24** (0.042 mmol, 35 mg) in MeOH (3 mL) was dropwise added a 33 % ammonium hydroxide aq. solution (1.8 mL). Protected from light, the reaction mixture was stirred at rt for 3 h and then acidified with AcOH (1.8 mL). After addition of 12 mL of milliQ water, the resulting solution was stored 12 h at 0 °C. The heterogeneous mixture was centrifuged for settling solid particles and the supernatant was carefully taken out with a syringe with a fine needle. The precipitate was triturated with a solution of MeOH/H₂O (7:3), and after centrifugation the supernatant was removed by suction. This operation was repeated 3 times. The final product was partially solubilized in water (300 µL). The resulting solution was frozen and lyophilized to provide the desired compound **4 (TCU)** as an orange solid (11 mg, 54 %). $C_{24}H_{18}N_2O_8S$ (494.47). $R_f = 0.50$ (DCM/MeOH = 9:1). ¹H-NMR (DMSO- d^6 , 500 MHz): $\delta = 2.15$ (ddd, ²J=13.5 Hz, ³J=6.5, 4.0 Hz, 1H, H2'_A), 2.21

(dd, ²*J*=13.5 Hz, ³*J*=6.5 Hz, 1H, H2′_B), 3.59 (ddd, ²*J*=12.0 Hz, ³*J*=4.5, 3.5 Hz, 1H, H5′_A), 3.66 (ddd, ²*J*=12.0 Hz, ³*J*=4.5, 3.5 Hz, 1H, H5′_B), 3.82 (q, ³*J*=3.5 Hz, 1H, H4′), 4.24–4.28 (m, 1H, H3′), 5.19 (t, ³*J*=5.0 Hz, 1H, 5′-OH), 5.27 (d, ³*J*=4.5 Hz, 1H, 3′-OH), 6.13 (t, ³*J*=6.5 Hz, 1H, H1′), 7.47 (ddd, ³*J*=8.0, 7.0 Hz, ⁴*J*=1.0 Hz, 1H, H6″), 7.48 (d, ³*J*=4.3 Hz, 1H, Hβ-thioph.), 7.73 (d, ³*J*=8.5 Hz, 1H, H8″), 7.81 (ddd, ³*J*=8.5, 7.0 Hz, ⁴*J*=1.5 Hz, 1H, H7″), 7.89 (d, ³*J*=4.3 Hz, 1H, Hα-thioph.), 8.10 (dd, ³*J*=8.0 Hz, ⁴*J*=1.5 Hz, 1H, H5″), 8.44 (s, 1H, H6), 10.67 (s, 1H, 3″-OH), 11.77 (s, 1H, NH); ¹³C-NMR (DMSO-*d*⁶, 125 MHz): δ = 40.1 (C2′), 60.7 (C5′), 69.8 (C3′), 84.7 (Th-*C*≡C-), 84.9 (C1′), 87.6 (C4′), 89.1 (Th-C≡*C*-), 97.6 (C5), 118.1 (C8″), 121.8 (C10″), 124.6 (C6″), 124.8 (C5″), 125.8 (C2″-*Th*), 128.0 (Cα), 132.4 (Cβ), 133.2 (*Th*-C≡C-), 133.7 (C7″), 137.3 (C3″), 142.1 (C2″), 144.3 (C6), 149.3 (C2), 154.1 (C9″), 161.1 (C4), 171.9 (C4″); MS (ESI⁺, MeOH) *m/z*: 495.3 [M+H]⁺, 517.2 [M+Na]⁺. HRMS (ESI⁻): *m/z* calcd for C₂₄H₁₉N₂O₈S: 493.0700 [M-H]⁻; found 493.0689.

1. NMR spectra

ppm (t1)

ppm (t1)

ppm (t1)

Control Method

Con	trol Method						
Name			Niko-060214-Free-Nucleotide-analytique				
User Name			Administrator				
Date Modified			10/02/2014 09:17:43				
Des	cription						
Method Time			61,0 [min]				
Pun	ър#1						
Initial Condition							
Pump Mode			LPG1				
Flov	v		0,500 [mL/min]				
Max	. Pressure		25,0 [MPa]				
Min. Pressure			0,0 [MPa]				
Solv	/ents						
A			90,0 [%] H2O + 0.1% AF				
В			10,0 [10,0 [%] ACN + 0.1% AF			
С			0,0 [%]	0,0 [%]			
D				0,0 [%]			
Tim	e Program						
#	Time [min]	Function	Value #1	Value #2	Value #3	Value #4	
1	5,00	Composition [%]	90,0	10,0	0,0	0,0	
2	40,00	Composition [%]	0,0	100,0	0,0	0,0	
3	45,00	Composition [%]	0,0	100,0	0,0	0,0	
4	55,00	Composition [%]	90,0	10,0	0,0	0,0	
5	60,00	Composition [%]	90,0	10,0	0,0	0,0	
Pump #1 Valve / Event							
Initial Condition							
Valve #1 1							
Event #1			Off				
Event #2			Off				
Eve	nt #3		Off	Off			
4WL	-UV Detecto	or					
Initi	al Condition						
Wavelength #1			254 [nm]				
Wavelength #2			280 [nm]				
Wa∨	elength #3		360 [nm]				
Wav	elength #4		393 [nm]				
Wav	elength #5 (F	Ratio)	0 [nm]				
Response			STD				
Auto	ozero		On	On			

