Hydrothermal Synthesis of Nanostructured Flower-like Ni(OH)₂ Particles and their Excellent Sensing Performance towards Low Concentration HCN Gas

Mingzhen Hu^{a,b}, Junhui He^{a,*}, Mingqing Yang^a, Xiaochun Hu^c, Chunxiao Yan^c

and Zhenxing Cheng^c

 ^a Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancundonglu 29, Haidianqu, Beijing 100190, China
 ^b University of Chinese Academy of Sciences, Beijing 100049, China
 ^c The No.3 Department, Institute of Chemical Defence, P.O.Box 1048, Beijing 102205,

China

* Corresponding author. Fax: +86 10 82543535. E-mail address: jhhe@mail.ipc.ac.cn.

Fig. S1 Typical SEM images of Ni(OH)₂ products fabricated at varied hydromal temperatures under otherwise identical conditions (SDBS/Ni molar ratio: 0.1, reaction time: 7 h): (a,c) 80 $^{\circ}$ C, (b,d) 140 $^{\circ}$ C.

Fig. S2 Typical SEM and TEM images of Ni(OH)₂ products synthesized using varied periods of reaction time under otherwise identical conditions (SDBS/Ni molar ratio: 0.1, hydromal temperature: 100 °C): (a,c): 3 h, (b,d): 12 h.

Fig. S3 Schematic illustration of the formation of hierarchically structured $Ni(OH)_2$ particles.

Fig. S4 Response profiles of Ni(OH)₂ modified QCM resonator towards: (a) acetone,
(b) ethyl ether, (c) water, (d) ethanol. The Ni(OH)₂ was prepared using a SDBS/Ni molar ratio of 0.1 at 140 °C for 7 h.

Fig. S5 Mass spectra of HCN effluent before (a) and after (b) contact with $Ni(OH)_2$ modified QCM resonator.

Fig. S6 XPS O 1s spectra of Ni(OH)₂ prepared using a SDBS/Ni molar ratio of 0.1. The hydrothermal temperature and reaction time are 100 $^{\circ}$ C and 7 h, respectively.

Calculation of the active oxygen molecules mole number

 Estimated by calculating the vacancy sites mole number of coated Ni(OH)₂ from XPS measurements

The surface molar ratio of Ni/vacancy sites is estimated to be 2:1 from XPS measurements (Fig. 7b). Thus, the active oxygen molecules mole number can be obtained by the following equation:

$$n_{o_2} = \frac{n_{Ni(OH)_2}}{2} = \frac{m_{Ni(OH)_2}}{2 \times M}$$

Where m(g) is the coating mass of Ni(OH)₂, M is the molar mass of Ni(OH)₂.

The coating mass of Ni(OH)₂ is 6 μ g and the molar mass of Ni(OH)₂ is 92.7 g/mol. Therefore, the mole number of active oxygen molecules is calculated to be 3.24×10^{-8} mol.

 Estimated by calculating the vacancy sites mole number of coated Ni(OH)₂ from QCM measurements

From the Sauerbrey equation, we can obtain the mass decrease of coated Ni(OH)₂. If this mass decrease is due to the removal of active oxygen molecules, we can then obtain the mole number of active oxygen molecules from the followintg equation:

$$n_{o_2} = \frac{A \times \Delta F}{-2.26 \times 10^{-6} \times F_0^2 \times M}$$

Where A (*cm*²) is the sensing surface area, ΔF (*Hz*) is the frequency shift from initial HCN contact to sensing equilibrium, F_0 (*Hz*) is the base frequency of quartz crystal, M is the molar mass of oxygen molecule.

From the above parameters, where $A = 0.39 \text{ cm}^2$, $\Delta F = 1011 \text{ Hz}$, $F_0 = 9001274.5 \text{ Hz}$, M = 32 g/mol, we can therefore calculate the mole number of active oxygen molecules as $6.73 \times 10^{-8} \text{ mol}$.