Supporting Information

Synthesis of g-C₃N₄/Bi₂O₃/TiO₂ composite nanotubes: Enhanced activity under visible light irradiation and improved photoelectrochemical activity

Yi Zhang^{a,b*}, JianiLu^a, Michael R. Hoffmann^b, Qiang Wang^a, Yanqing Cong^a, Qi Wang^a, HuanJin^a ^aSchool of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China ^bLinde-Robinson Laboratories, California Institute of Technology, Pasadena, CA 91125, USA

^{*}To whom correspondence should be addressed. E-mail: zhangyi@zjgsu.edu.cn. Tel.: +86-571-28878218, Fax: +86-571-28008215

Fig.S1.

Fig.S1.Energy-dispersive X-ray (EDX) spectroscopy of $g-C_3N_4/TiO_2-NTs$ (a),

Bi₂O₃/TiO₂-NTs (b), g-C₃N₄/Bi₂O₃/TiO₂-NTs (c).

Fig. S2.

Fig. S2. The corresponding Kubelka-Munk transformed reflectance spectraof TiO₂-NTs (a), g-C₃N₄/TiO₂-NTs (b), Bi₂O₃/TiO₂-NTs (c) and g-C₃N₄/Bi₂O₃/TiO₂-NTs (d)

Fig. S3.

Fig. S3. LSVs of TiO_2 -NTs and $g-C_3N_4/Bi_2O_3/TiO_2$ -NTs in 0.1 M Na₂SO₄ and Na₂SO₃mixed aqueous solution (pH 10.5) under chopped visible light irradiation. Scan rate: 5 mV/s. Light intensity: 100 mW/cm².

Fig.S4.

Fig. S4. The absorbance spectra of MB degradation at the $g-C_3N_4/Bi_2O_3/TiO_2-NTs$ electrode in PEC process. Applied potential: 3.0 V. Electrolyte: 0.1 M Na₂SO₄, pH =

3.

Fig. S5.

Fig.S5.Variation of phenol concentration vs. time at the $g-C_3N_4/Bi_2O_3/TiO_2-NTs$ electrode in EC, PC and PEC processes. Applied potential: 3.0 V. Electrolyte: 0.1 M

 Na_2SO_4 , pH = 3.

Fig.S6

Fig.S6.The typical HPLC chromatograms of phenol degradation at the g-

 $C_3N_4/Bi_2O_3/TiO_2$ -NTs electrode in PEC process. Applied potential: 3.0 V. Electrolyte:

 $0.1 M Na_2 SO_4, pH = 3.$