Nb-doped VO_x/CeO₂ catalyst for NH₃-SCR of NO_x at low temperatures

Zhihua Lian, Fudong Liu^{*†}, Hong He^{*}, Kuo Liu

State Key Joint Laboratory of Environment Simulation and Pollution Control,

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,

Beijing 100085, PR China

*Corresponding author. Fax: +86 10 62849123; Tel: +86 10 62849123; E-mail:

fudongliu@lbl.gov, lfd1982@gmail.com (F. Liu); honghe@rcees.ac.cn (H. He)

[†] Present address: Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States

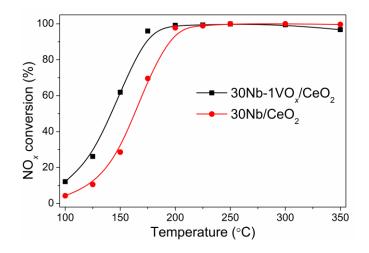


Fig. S1 NH₃-SCR activity over $30Nb-1VO_x/CeO_2$ and $30Nb/CeO_2$ catalysts.

Reaction conditions: $[NO] = [NH_3] = 500$ ppm, $[O_2] = 5$ vol. %, N₂ balance, total flow

rate 500 ml/min and GHSV = 50 000 h^{-1} .

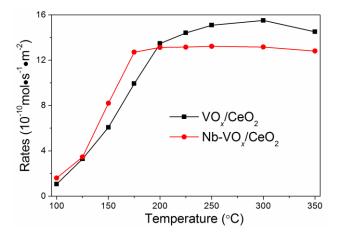


Fig. S2 The NH₃-SCR reaction rates normalized by surface area over VO_x/CeO₂ and

30Nb-VO_x/CeO₂ catalysts.

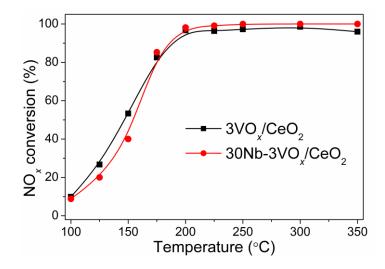


Fig. S3 NH₃-SCR activity over 3VO_x/CeO₂ and 30Nb-3VO_x/CeO₂ catalysts.

Reaction conditions: $[NO] = [NH_3] = 500$ ppm, $[O_2] = 5$ vol. %, N₂ balance, total flow

rate 500 ml/min and GHSV = 50 000 h^{-1} .

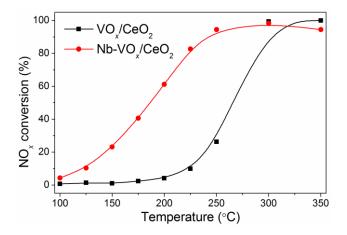


Fig. S4 NH₃-SCR activity over 1VO_x/CeO₂ and 30Nb-1VO_x/CeO₂ catalysts after 100

ppm SO₂ poisoning for 48 h.

Reaction conditions: $[NO] = [NH_3] = 500 \text{ ppm}, [O_2] = 5 \text{ vol. }\%, N_2 \text{ balance, total flow}$

rate 500 ml/min and $GHSV = 50\ 000\ h^{-1}$.

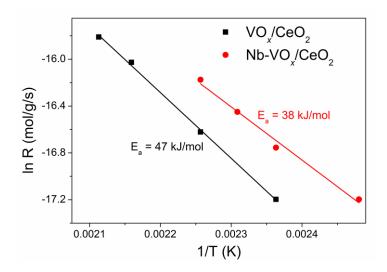


Fig. S5 Plots of rate (R) versus temperature of NO reduction over VO_x/CeO_2 and $30Nb-1VO_x/CeO_2$ catalyst. Reaction conditions: total flow rate: 500 ml/min, mass of

the catalyst: 100 mg (40-60 mesh), 500 ppm NO + 500 ppm NH_3 + 5% $O_2.$

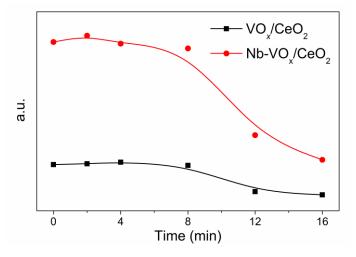


Fig. S6 The band intensities of adsorbed NH_3 species calculated from DRIFT spectra over $1VO_x/CeO_2$ and $30Nb-1VO_x/CeO_2$ pretreated by exposure to NH_3 followed by

exposure to NO + O_2 at 175 $^{\circ}C$.

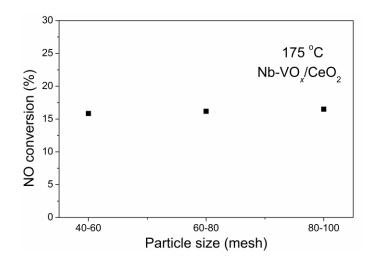


Fig. S7 Influence of particle-size-distribution on the NO conversion over

30Nb-1VO_x/CeO₂ catalyst. Reaction conditions: total flow rate: 500 ml/min, mass of the catalyst: 100 mg, temperature: 175 °C, 500 ppm NO + 500 ppm NH₃ + 5% O₂.

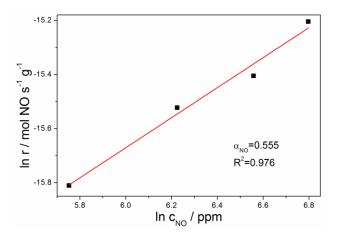


Fig. S8 Plot of lnr to lnc_{NO} over 30Nb-1VO_x/CeO₂ catalyst. Reaction conditions: total flow rate: 500 ml/min, mass of the catalyst: 100 mg (40-60 mesh), temperature: 175

 $^{o}C,$ 200-900 ppm NO + 500 ppm NH_{3} + 5% O_{2}.