Supporting Information

Fluorescent phenylethynylene Calix[4]arenes for sensing TNT in aqueous media and vapor

phase

Kanokthorn Boonkitpatarakul,^a Yamonporn Yodta,^b Nakorn Niamnont,^c Mongkol

$Sukwattanasinitt^{\ast,b}$

^a Program of Petrochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10300, Thailand

^bDepartment of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10300, Thailand

^cDepartment of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand

msukwatt@gmail.com

	Page
Table S1 Photophysical and HOMO, LUMO data	S2
Fig S1 HOMO and LUMO energy levels calculated for BAC, SAC, ANC,	
and explosive analytes i.e. DNT, TNT, and PA.	S2
Fig. S2 Cyclic voltammogram of ferrocene, ANC, SAC, and BAC	
in DMF used for determination of HOMO and LUMO.	S3
Fig. S3 Fluorescence responses of ANC to DNT and PA.	S4
Fig. S4 Stern-Volmer plots for fluorescence quenching of ANC with TNT, DNT and PA.	S4
Fig. S5 Fluorescence intensity of ANC 0.5 μ M at λ_{max} = 420 nm in various pH.	S4
Fig. S6. Job's plot of fluorescence responses of ANC upon addition of TNT	
showing 1:1 stoichiometry.	S5
Fig. S7. Fluorescence quenching of ANC for TNT 100 equiv	
in DMF and 1%THF/H ₂ O.	S5
Fig. S8 Impression of a glove-wearing thumb after rubbing with various	
nitroaromatic compounds.	S5
Table S2 Fluorescence quenching effects of TNT and PA found in	
this work in comparison with previously reported literature works	S6
NMR Spectra	S7

Compound	Absorption		Fluorescence		НОМО	LUMO
	λ_{max} (nm)	log ε	λ_{max} (nm)	Φ(%)	(eV)	(eV)
BAC	310	4.98	433	10.0	-5.64	-2.18
SAC	314	4.98	433	5.0	-5.03	-1.56
ANC	315	5.08	421	7.0	-4.84	-1.54

Fig S1 HOMO and LUMO energy levels calculated for BAC, SAC, ANC, and some explosive analytes such as DNT, TNT, and PA.

Fig. S2 Cyclic voltammogram of ferrocene, ANC, SAC, and BAC in DMF used for determination of HOMO and LUMO.

 $E_{HOMO} = -(E(ox)_{onset} - E_{half} + 4.8)^a$

E(ox)_{onset} is the onset oxidation potential

 $E_{gap} = 1242/\lambda_{cut off}$ where $\lambda_{cut off}$ is the longest wavelength which give minimum absorption

 $E_{LUMO} = E_{HOMO} + E_{gap}$

(a) Deng, P.; Liu, L.; Ren, S.; Li, H.; Zhang, Q. Chem. Commun., 2012, 48, 6960.;(2) Tsai, J.-H.; Lee, W.-Y.; Chen, W.-C.; Yu, C.-Y.; Hwang, G.-W.; Ting, C. Chem. Mater., 2010, 22, 3290; (c) Lu, C.; Wu, H. C.; Chiu, Y. C.; Lee, W. Y.; Chen, W. C. Macromolecules, 2012, 45, 3047.

Fig. S3 Fluorescence responses of ANC to DNT and PA.

Fig. S4 Stern-Volmer plots for fluorescence quenching of ANC with TNT, DNT and PA.

Fig. S5 Fluorescence intensity of ANC 0.5 μ M at λ_{max} = 420 nm in various pH.

Fig. S6 Job's plot of fluorescence responses of **ANC** upon addition of TNT showing 1:1 stoichiometry.

Fig. S7 Fluorescence quenching of ANC for TNT 100 equiv in DMF and 1%THF/H₂O.

Fig. S8 Impression of a glove-wearing thumb after rubbing with various nitroaromatic compounds.

TN	TNT		PA		References
$K_{sv}(M^{-1})$	%Q at 10	$K_{sv}(M^{-1})$	%Q at		
	μM		10 µM		
3.65x10 ⁴	-	4.5×10^{2}	-	Film in	b
				aqueous	
1.2×10^{5}	-	1.8×10^{3}	-	Film in	С
				aqueous	
1.33x10 ⁶	94%	-	20%	AIE in	d
				20%THF/H ₂ O	
1.45×10^{5}	_	1.2×10^4	_	Film in	P
11.0.110		1		aqueous	·
1.37×10^{5}	_	-	_	AIE 5%	f
1.0 , 111 0				THE/H ₂ O	J
				1111/1120	
9 48x10 ⁴	_	1 84 x10 ⁴ -	_	Fe ₂ O ₄ @Tb-	g
,		110 1 111 0		BTC	0
				nanospheres in	
				FtOH	
	05%		550/	Film in	h
-	9370	-	5570		n
1.00×1.05	520/	2.1×10^4	120/	aqueous	This work
1.09X10 ⁵	3270	$\angle .1X10^{-1}$	1370	m aqueous	THIS WOLK

Table S2 Fluorescence quenching effects of TNT and PA found in this work in comparison with previously reported literature works

(b) He, G.; Yan, N.; Yang, J.; Wang, H.; Ding, L.; Yin, S.; Fang, Y. *Macromolecules*, **2011**, *44*, 4759.

(c) Xu, B.; Wu, X.; Li, H.; Tong, H.; Wang, L.; Macromolecules, 2011, 44, 5089.

(d) Kumar, M.; Vij, V.; Bhalla, V. Langmuir, 2012, 28, 12417.

(e) Jagtap, S. B.; Potphode, D. D.; Ghorpade, T. K.; Palai, A. K.; Patri, M.; Mishra, S. P. *Polymer*, **2014**, *55*, 2792.

(f) Feng, H. T.; Wang, J. H.; Zheng, Y. S. ACS Appl. Mater. Interfaces,

dx.doi.org/10.1021/am505636f

(g) Qian, J. J.; Qiu, L. G.; Wang, Y. M.; Yuan, Y. P.; Xie, A. J.; Shen, Y. H. *Dalton Trans.*, **2014**, *43*, 3978.

(h) Kartha, K. K.; Sandeep, A.; Nair, V. C.; Takeuchi, M.; Ajayaghosh, A. Phys. Chem. Chem. Phys., 2014, 16, 18896.

H¹-NMR (400 MHz) of 2a in CDCl₃

H¹-NMR (400 MHz) of **2b** in CDCl₃

H¹-NMR (400 MHz) of ANC in CDCl₃

H¹-NMR (400 MHz) of BAC in Acetone-d6

PROTON_01 I-BAC in acetone

H¹-NMR (400 MHz) of SAC in Metanol-d4

