
Supporting Information

for RSC Advances

Deciphering the formation mechanism of protective corrosion product layer from electrochemical and natural corrosion behaviors of nanocrystalline zinc coating

Qingyang Li,^a Zhongbao Feng,^a Lihua Liu,^b Hong Xu,^b Wang Ge,^a Fenghuan Li^a and Maozhong An^{a,*}

Fig. S1 Schematic diagram for natural corrosion behaviors of coarse-grained and nanocrystalline zinc coatings.

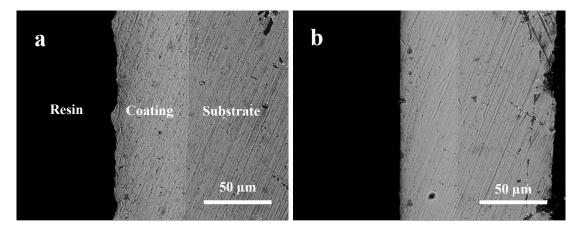
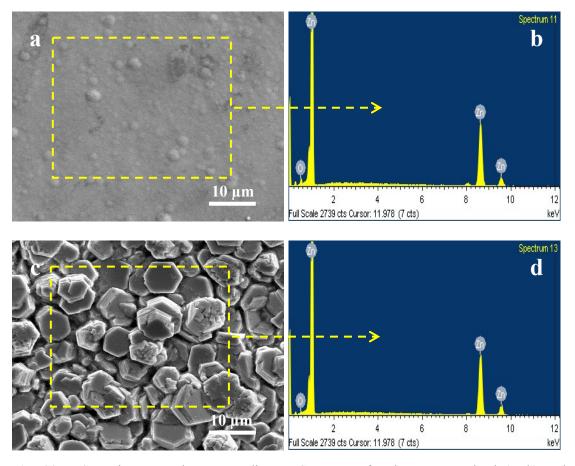
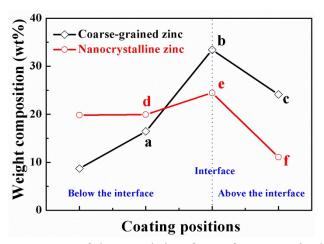




Fig. S2 Cross-sectional morphologies of the coarse-grained (a) and nanocrystalline (b) zinc coatings.

Fig. S3 FESEM images and corresponding EDS patterns for the coarse-grained (a, b) and nanocrystalline (c, d) zinc coatings after 100 h of placement in an isolate environment without any corrosive medium as similar to Fig. S1.

Fig. S4 Atomic oxygen contents of the corroded surfaces of coarse-grained and nanocrystalline zinc coatings in simulated seawater after 100 h of immersion. (Points a-f corresponding to the O contents of EDS spectrums in Fig. 10, respectively.)

Table S1 Fitting results for the EIS data acquired from coarse-grained (CG) and nanocrystalline (NC) zinc coatings in simulated seawater.

Sample	R_{s}	Q_l	n	R_1	Q_{dl}	n	R_{ct}	$Z_{\rm w}$	Chi	
	$\Omega \ cm^2$	F cm ⁻²	0 <n<1< td=""><td>$\Omega \ cm^2$</td><td>F cm⁻²</td><td>0<n<1< td=""><td>$\Omega \ cm^2$</td><td>Ω cm² sec^{-0.5}</td><td>squired</td></n<1<></td></n<1<>	$\Omega \ cm^2$	F cm ⁻²	0 <n<1< td=""><td>$\Omega \ cm^2$</td><td>Ω cm² sec^{-0.5}</td><td>squired</td></n<1<>	$\Omega \ cm^2$	Ω cm ² sec ^{-0.5}	squired	
CG	19.65	1.515×10 ⁻⁴	0.8159	132.2	8.215×10 ⁻³	0.6486	121.9	0.1082	2.27410-4	
Error %	0.5233	4.216	0.7789	2.107	4.943	5.468	6.312	10	3.374×10 ⁻⁴	
NC	11.22	1.323×10 ⁻⁴	0.5103	6.162	8.67×10 ⁻⁶	0.9514	360.2	0.04448	1 (07104	
Error %	1.831	4.389	1.51	4.746	10	0.1325	0.5268	3.781	1.607×10 ⁻⁴	

Table S2 Fitting results for the EIS data acquired from the corrosion product layer of coarse-grained (CG-P) zinc coating in simulated seawater.

Sample	R_s C_{l1}		R_{l1} C_{l2}		R_{l2}	R_{l2} C_{dl}		Chi squired	
	$\Omega \ cm^2$	F cm ⁻²	$\Omega \ cm^2$	F cm ⁻²	$\Omega \ cm^2$	F cm ⁻²	$\Omega \ cm^2$	Ciii squiieu	
CG-P	16.73	2.818×10 ⁻⁵	18.59	9.481×10 ⁻⁵	31.64	5.313×10 ⁻³	47.14	1.28×10 ⁻³	
Error %	0.9606	4.709	5.762	7.573	3.634	5.102	2.786		

Table S3 Fitting results for the EIS data acquired from the corrosion product layer of nanocrystalline (NC-P) zinc coating in simulated seawater.

Sample	R_s	C_1	R_1	C_{dl}	R _{ct}	$Z_{\rm w}$	Chi aquirod	
	$\Omega \text{ cm}^2$	F cm ⁻²	$\Omega \ cm^2$	F cm ⁻²	$\Omega \ cm^2$	Ω cm 2 sec $^{-0.5}$	Chi squired	
NC-P	17.86	1.727×10 ⁻⁵	52.18	2.202×10 ⁻⁵	86.89	0.0441	5.470×10 ⁻⁴	
Error %	0.6351	2.042	6.131	6.296	3.714	6.976		