Enhanced thermal stability of polystyrene by graphitic carbon nitride/spinel ZnCo₂O₄ nanohybrids and the catalytic mechanism investigation

Yongqian Shi^{ab}, Yulu Zhu^a, Bin Yu^{ab}, Richard K.K Yuen^b, Zhou Gui^{a*},

Hui Liu^c, Yuan Hu^{a*}

^a State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China

^b Department of Architecture and Civil Engineering, City University of Hong Kong,

Tat Chee Avenue, Kowloon, Hong Kong

^c Nano Science and Technology Institute, University of Science and Technology of China, 166 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China

* To whom correspondence should be addressed.

Tel.:+86-551-3601288; fax: +86-551-3601669. E-mail address: zgui@ustc.edu.cn (Z. Gui) and

Tel.: +86-551-3601664; fax: +86-551-3601664. E-mail address: yuanhu@ustc.edu.cn (Y. Hu).

2. Experimental section

2.1. Raw materials

PS (158 K) was obtained from BASF-YPC Co., Ltd. (China). Cobaltous acetate tetrahydrate ($Co(OAc)_2 \cdot 4H_2O$), Zinc nitrate hexahydrate ($Zn(NO_3)_2 \cdot 4H_2O$), urea, and anhydrous ethanol were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Ammonium hydroxide ($NH_3 \cdot H_2O$) was provided by Shanghai Pilot Chemical Co., Ltd. (Shanghai, China). All reagents were used as received without further purification.

2.2. Preparation of ZnCo₂O₄/g-C₃N₄ nanohybrids

The bulk g-C₃N₄ was synthesized according to our previous work.¹ The C-ZnCo₂O₄ nanohybrids were prepared by conventional solvothermal method. In a typical procedure, 0.23 g of as-synthesized g-C₃N₄ was dispersed in 60 mL of anhydrous ethanol under ultrasonication. After sonication for 2 h, 12 mL of 0.1 M Co(OAc)₂ and 6.25 mL of 0.1 M Zn(NO₃)₂ were introduced into the suspension above, followed by the addition of 1.75 mL of NH₃·H₂O at room temperature with further stirring for 10 h. Then the reaction mixture was transferred to a 100 mL of Teflon-lined autoclave and heated at 150 °C for 10 h. The resulting product was collected by centrifugation and washed with ethanol, and dried at 80 °C. The resulting nanohybrid was collected and labeled as C-ZnCo₂O₄. For comparison, free ZnCo₂O₄ nanoparticles were synthesized by the same strategy as C-ZnCo₂O₄ except for adding g-C₃N₄.

2.3. Preparation of PS composites

PS composites were prepared by mixing PS matrix with C-ZnCo₂O₄ nanohybrids (2 wt% in this work) in a Brabender-like apparatus (LH-60, afforded by Shanghai Kechuang Plastic Machinery Co., Ltd., China) with a roller speed of 60 r/min at 180 °C for 15 min. The resulting composites were hot-pressed into sheets for characterization. Both of PS/g-C₃N₄ and PS/ZnCo₂O₄ composites were prepared in a similar procedure.

2.4. Characterization

Powder X-ray diffraction (XRD) patterns were performed with a Japan Rigaku Dmax

X-ray diffractometer equipped with graphite monochromatized high-intensity Cu-Ka radiation (λ = 1.54178 Å). Transmission electron microscopy (TEM) was provided by JEOL 2010F with an acceleration voltage of 200 kV. XPS spectra were recorded using a Kratos Axis Ultra DLD spectrometer employing a monochromatic Al Ka Xray source (hv= 1486.6 eV). The morphologies of the fracture surface of PS composites were investigated by SEM (AMRAY1000B, Beijing R&D Center of the Chinese Academy of Sciences, China). These samples were fractured in liquid nitrogen and sputter coated with a gold layer before observation. Thermogravimetric analysis (TGA) of the obtained samples was carried out with Q5000 thermal analyzer (TA Co., USA) from 30 °C to 800 °C at a heating rate of 20 °C min⁻¹ in air atmosphere (flow rate of 100 mL min⁻¹).

References

1. Y. Shi, S. Jiang, K. Zhou, B. Wang, B. Wang, Z. Gui, Y. Hu and R. K. K. Yuen, *RSC Adv.*, 2014, **4**, 2609-2613.