The System Ce-Zn-Si for <33.3% at. Ce:

Phase Relations, Crystal Structures and Physical Properties

Fainan Failamani^{*a*}, Andriy Grytsiv^{*a,f*}, Raimund Podloucky^{*a*}, Herwig Michor^{*b*}, Ernst Bauer^{*b,f*}, Pavel Broz^{*c,d*}, Gerald Giester^{*e*}, Peter Rogl^{*a,f*}, •

^a Institute of Physical Chemistry, University of Vienna, Währingerstraße 42, A-1090 Vienna, Austria. Email: fai.failamani@gmail.com, andriy.grytsiv@univie.ac.at, raimund.podloucky@univie.ac.at, peter.franz.rogl@univie.ac.at; Fax: +43 142779524; Tel: +43 1427752456 ^b Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria. Email: michor@ifp.tuwien.ac.at, bauer@ifp.tuwien.ac.at; Fax: +43 15880113199; Tel: +4315880113160

^c Masaryk University, Faculty of Science, Department of Chemistry, Kotlarska 2, Brno 61137, Czech Republic.

^d Masaryk University, Central European Institute of Technology, CEITEC, Kamenice 753/5, Brno 62500, Czech Republic. Email:

broz@chemi.muni.cz; Fax: +420 549493299; Tel: +420 549493299

eInstitute of Mineralogy and Crystallography, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria. Email: gerald.giester@univie.ac.at; Fax: +43 14277853235; Tel: +43 1427753235;

^f Christian Doppler Laboratory for Thermoelectricity, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria.

^{*} Corresponding author; email: peter.franz.rogl@univie.ac.at

Phase	Space group,	Lattice parameters (nm)			Comments
Temperature range (°C)	Prototype	a	b	c	
(SCe)	$Im\overline{3}m$	0.412	-	-	1
798-700 ¹	W				_
(yCe)	$Fm\overline{3}m$	0.51610	-	-	1
<7261	Cu				
(Zn)	P6 ₂ /mmc	0.2665		0 4947	1
<420 1	1 03/11/10	0.2003		0.1917	-
(Si)	$Fd\overline{3}m$	0.543110	-	-	2
<1414 1	C (Diamond)				
CeSi ₂	Imma	0.4189(1)	-	0.4109(1)	Ce _{37.4} Si _{62.6} ³
<1725 3	α GdSi ₂		-		
CeSi ₂	$I4_1/amd O2$	0.4192(1)	-	1.3913(5)	Ce _{33.3} Si _{66.7} ³
~1575 3	α ThSi ₂	0.4201(1)		1.4312(7)	x_{max} =0.32 at 800°C ⁴
$Ce(Zn_xSi_{1-x})_2$		0.42029(6)	-	1.4258(4)	x _{max} =0.30, at 600°C [this work]
CeSi <1630 ³	Pnma FeB	0.8298(4)	-	0.3961(2)	$Ce_{49.9}Si_{50.1}$ ³
Ce ₅ Si ₄	P41212	0.7936(1)	-	1.5029(5)	$Ce_{55,6}Si_{44,4}$ ³
<1500 3	Zr ₅ Si ₄				22.0
Ce ₃ Si ₂	P4/mbm	0.7780(6)	-	0.4367(6)	3
<1335 s	U ₃ S1 ₂	0.7979(4)		1.067(1)	3
<1260 3	Cr _c B ₂	0.7878(4)	-	1.007(1)	
Ce ₂ Si _{3-x}	Стст	0.44035	2.48389	0.39517	x=0.3 ⁵
2 5**	V_2B_3				
CeSi ₅	Immm	0.37774839	0.60189(4)	0.92979(6)	6
<827	LaGe5	. =0.00.0 (=)			high pressure phase; 10GPa
Ce ₂ Si ₇	Cmmm C - Si	0.70893(7)	0.99644(7)	0.44868(4)	bish second shares 10CDs
<112/ Co7n	Ce_2Sl_7	0.2704(1)			nign pressure phase; 10GPa
Cezii	Pm3m	0.3704(1)	-	-	
<825 1	CsCl	0.37059(2)	-	-	8
CeZn ₂	Imma	0.46393(8)	0.7544(1)	0.7506(1)	8
$< 8/5^{-1}$	CeCu ₂	0.4583(3)	0.7568(5)	0.759(5)	$X_{max} = 0.18^{-7}$
$Ce(Zn_{1-x}Sl_x)_2$	Crusore	0.46417(0)	0.7396(7)	0.7508(1)	x=0.05 at 600°C [this work]
CeZII ₃	Cmcm	0.4620(3)	1.0440(3)	0.0040(3)	,
<820 1	CeZn ₃	0.46324(5)	1.0452(1)	0.66557(6)	8
Ce ₃ Zn ₁₁	Immm	0.45215	0.88855	1.3463	7
<840 1	La ₃ Al ₁₁	0.45242(2)	0.88942(3)	1.34754(4)	SC 8
Ce ₁₃ Zn ₅₈	$P6_3/mmc$	1.4638(1)	-	1.4158(1)	9
	Gd ₁₃ Zn ₅₈	1.4616(1)	-	1.41/3(1)	7
CeZn ₅	P6/mmm	0.54163(5)	-	0.4264/(5)	8
<003 · CoZn	CaCu ₅	0.54082(1) 0.54163(5)	-	0.42/96(1) 0.42647(5)	0.017
	IA Jamed	0.997(1)	-	0.42047(3)	0.01/SyS0.040 <883 C **
$< 960^{-1}$	CerZn-	0.897(1)	-	2.135(5)	SC 8
ß Ce ₂ Zn ₁₂	<u><u>n</u>2</u>	0.9090(5)		1 32844(7)	7
P CC22LII17	л эт	0.5050(5)		1.52011(7)	
<980 1	$1 h_2 Z n_{17}$	0.00017(4)	-	1.229(1/1)	8
980-~/30 °	DC /mm.a	0.0009(4)	-	1.32801(1)	12
$\alpha \operatorname{Ce}_2 \operatorname{Zn}_{17}$	ro ₃ /mmc	0.9088(4)	-	0.8850(5)	
$\alpha Ce_{1+x} Zn_{5+2x}$	I DCu ₇	0.52424(2)		0.442/4(1)	x=0.33 °
CeZn	IA./amd	1.0658(6)		0.6862(8)	13
<795 1	$BaCd_{11}$	1.06630(1)		0.686644(7)	8

Table S1. Crystallographic data of unary and binary boundary solid phases of the system Ce-Zn-Si.

Fable S2. Interatomic distances	$(<0.421 \text{ nm}) \text{ in } \tau_5$	$-CeZn(Zn_{1-x}Si_x)_2, x =$	= 0.71 and τ_6 -CeZn ₂ (Si ₁	$_{-x}Zn_{x})_{2}, x = 0.30).$
---------------------------------	--	------------------------------	---	--------------------------------

$ au_{5}$ -CeZn(Zn _{1-x} Si _x) ₂ , x = 0.71					τ_6 -CeZn ₂ (Si _{1-x} Zn _x) ₂ , x = 0.30			
Atom 1	Atom 2	Distance	Atom 1	Atom 2	Distance	Atom 1	Atom 2	Distance
Ce	M1 (2x)	0.31726		Ce (2x)	0.31726	Ce	M (8x)	0.31901
CN=21	M1 (4x)	0.31916		Ce (4x)	0.31916	CN=22	Zn1 (8x)	0.33555
	M2 (4x)	0.31940	M2	M1 (1x)	0.23975		M (2x) ^a	(0.40460)
	Zn3 (2x)	0.33470	CN=9	Zn3 (2x)	0.25263		Ce (4x) ^a	(0.41757)
	Zn3 (2x)	0.33714		Zn3 (2x)	0.25381	Zn1	M (4x)	0.25245
	M2 (1x) ^a	(0.40539)		Ce (4x)	0.31940	CN=12	Zn1 (4x)	0.29527
	Ce (2x) ^a	(0.41324)	Zn3	M2 (2x)	0.25263		Ce (4x)	0.33555
	Ce (2x) ^a	(0.41619)	CN=16	M2 (2x)	0.25381	М	M (1x)	0.24152
	Ce (2x) ^a	(0.42079)		Zn3 (4x)	0.29592	CN=9	Zn1 (4x)	0.25245
M1	M1 (2x)	0.23917		Ce (2x)	0.33470		Ce (4x)	0.31901
CN=9	M2 (1x)	0.23975		Ce (2x)	0.33714			

Contribution of these atoms to the Dirichlet domain is less than 2%, which indicates rather weak bonding.

References

- 1 *Pauling File Binary Edition, Version 1.0, Release 2002/1*, ASM international, Materials Park, OH, USA, 2002.
- 2 G. Celotti, D. Nobili and P. Ostoja, J. Mater. Sci., 1974, 9, 821-828.
- 3 M. V. Bulanova, P. N. Zheltov, K. A. Meleshevich, P. A. Saltykov and G. Effenberg, *J. Alloys Compd.*, 2002, **345**, 110–115.
- 4 Z. Malik, A. Grytsiv, P. Rogl and G. Giester, Intermetallics, 2013, 36, 118–126.
- 5 P. Schobinger-Papamantellos and K. H. J. Buschow, J. Alloys Compd., 1993, 198, 47–50.
- 6 A. Wosylus, K. Meier, Y. Prots, W. Schnelle, H. Rosner, U. Schwarz and Y. Grin, *Angew. Chem.*, 2010, **122**, 9187–9191.
- 7 P. Villars and K. Cenzual, *Pearson's Crystal Data–Crystal Structure Database for Inorganic Compounds, release 2014/15*, ASM International, Materials Park, OH, USA, 2014.
- 8 Z. Malik, O. Sologub, G. Giester and P. Rogl, J. Solid State Chem., 2011, 184, 2840–2848.
- 9 S. Piao, C. P. Gómez and S. Lidin, Z. Krist., 2006, 221, 391-401.
- 10B. G. Lott and P. Chiotti, Acta Crystallogr., 1966, 20, 733-738.
- 11 P. I. Kripyakevich, Y. B. Kuz'ma and N. S. Ugrin, J. Struct. Chem., 1968, 8, 632-633.
- 12 A. Iandelli and A. Palenzona, J. -Common Met., 1967, 12, 333-343.
- 13O. Zelinska, M. Conrad and B. Harbrecht, Z. Krist. New Cryst. Struct., 2004, 219, 357-358.