Supporting Information

Highly Efficient Synthesis of Polyfluorinated Dendrons Suitable for Click Chemistry

Dominik K. Kölmel, ${ }^{a}$ Martin Nieger, ${ }^{\text {b }}$ Stefan Bräse*ac

${ }^{\text {a }}$ Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
${ }^{\mathrm{b}}$ University of Helsinki, Laboratory of Inorganic Chemistry, PO Box 55, FIN-00014, Finland
${ }^{\text {c }}$ Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

[^0]
Table of Contents

1. General Information
2. Experimental Procedures and Characterization
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra
4. Crystallographic Data
5. References

1. General Information

All reactions were carried out under stirring. Reactions under inert gas were carried out in flasks equipped with septa under argon (supplied by using a standard manifold with vacuum and argon lines). Analytical TLC was performed on MERCK ready-to-use plates with silica gel 60 (F254). Column chromatography: MERCK silica gel 60, 0.040.063 mm . IR spectra were recorded by using FT-IR Bruker ALPHA-T spectrometer. The samples were measured by using the attenuated total reflexion (ATR) technique. The transmission intensities of the bands were characterized as follows: $\mathrm{s}=$ strong (11-40\%), $\mathrm{m}=$ medium (41-70\%), w = weak (71-90\%), vw = very weak (91-100\%) transmission. NMR spectra were recorded at $25{ }^{\circ} \mathrm{C}$ by using Bruker AM $400\left(400\left({ }^{1} \mathrm{H}\right), 376.5\left({ }^{19} \mathrm{~F}\right)\right.$ and $\left.100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)\right)$ and Bruker DRX $500\left(500\left({ }^{1} \mathrm{H}\right)\right.$ and $\left.125 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)\right)$ spectrometer. All spectra are referenced to tetramethylsilane as standard ($\delta=0 \mathrm{ppm}$) by using the signals of the solvent:
$\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}\left(\mathrm{CHCl}_{3}\right)$ or $77.16 \mathrm{ppm}\left({ }^{13} \mathrm{CDCl}_{3}\right)$

The spectra were analyzed according to first order. Multiplicities of the signals are described as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{m}=$ multiplet, $\mathrm{m}_{\mathrm{c}}=$ centered multiplet. Coupling constants (J) are given in Hz. Multiplicities in the ${ }^{13} \mathrm{C}$ NMR spectra were determined by DEPT (distortionless enhancement by polarization transfer) measurements and are described as follows: $+=$ primary or tertiary $\mathrm{C}-\mathrm{atom},-=$ secondary $\mathrm{C}-\mathrm{atom}$, and $\mathrm{C}_{\mathrm{q}}=$ quaternary C -atom. Mass spectra (EI) were obtained by using a Finnigan MAT 90 spectrometer. MALDI-TOF mass spectra were obtained by using a Bruker Biflex IV spectrometer with a pulsed ultraviolet nitrogen laser, $200 \mu \mathrm{~J}$ at 337 nm and a time-offlight mass analyzer with a 125 cm linear flight path. A 1:1 mixture of 2,5dihydroxybenzoic acid and α-cyano-4-hydroxycinnamic acid (dissolved in $\mathrm{H}_{2} \mathrm{O}$ /acetonitrile ($1: 1$) with 0.1% TFA) was used as matrix. Reversed phase preparative HPLC was performed using Jasko LC-NetII/ADC Series, equipped with a C18 Vydac 218 TP Series (Grace Davison Discovery Sciences, $5 \mu \mathrm{~m}, 22 \times 250 \mathrm{~mm}$). Flow rate: $15 \mathrm{~mL} / \mathrm{min}$; solvent A: 0.1% TFA in water; solvent B: 0.1% TFA in acetonitrile.

2. Experimental Procedures and Characterization

General procedure 1: Sonogashira coupling with trimethylsilylacetylene

Trimethylsilylacetylene (2.00 equiv.) was added to a solution of the respective iodide (1-OC($\left.\mathrm{CF}_{3}\right)_{3}, \mathbf{3}$ or $\mathbf{5}, 1.00$ equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (0.05 equiv.), and CuI (0.10 equiv.) in dry $\mathrm{NEt}_{3} / \mathrm{THF}$ (2:1) under argon atmosphere. The mixture was stirred at $45^{\circ} \mathrm{C}(4 \mathrm{~h}$ to overnight). Afterwards a saturated solution of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the product was extracted with dichloromethane. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. The crude product was purified by using column chromatography.

General Procedure 2: Deprotection of trimethylsilylalkynes
$\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.30 equiv.) was added to a solution of the respective trimethylsilylalkyne (2-SiMe $3,4-\mathrm{SiMe}_{3}$, or $\mathbf{6}-\mathrm{SiMe}_{3}, 1$ equiv.) in dry methanol. The suspension was stirred for 1.5 d at room temperature. Afterwards $\mathrm{H}_{2} \mathrm{O}$ was added and the product was collected by filtration, washed with methanol and dried under vacuum.

General Procedure 3: Copper(I)-catalyzed azide-alkyne cycloaddition
1,3-Bis(azidomethyl)-5-iodobenzene ($1-\mathrm{N}_{3}, 1.00$ equiv., 30% in DMF) was added to a solution of the respective alkyne ($2-\mathrm{H}$ or $4-\mathrm{H}, 2.20$ equiv.), $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ (0.20 equiv.) and 2,6-lutidine (0.20 equiv.) in dry THF under argon atmosphere. The mixture was stirred for 2 d at $40^{\circ} \mathrm{C}$. Afterwards a half-saturated solution of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the product was extracted with dichloromethane. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. The crude product was purified by using column chromatography.

1,3-Bis(bromomethyl)-5-iodobenzene (1-Br):

The preparation and properties of compound $\mathbf{1}-\mathrm{Br}$ have been reported in reference 1 .

1,3-Bis(azidomethyl)-5-iodobenzene ($1-\mathrm{N}_{3}$):

The preparation and properties of compound 1-N3 have been reported in reference 1 .

1-Iodo-3,5-bis((perfluoro-tert-butoxy)methyl)benzene (1-OC(CF $\mathbf{3}_{3}$) :

Sodium perfluoro-tert-butanolate $(2.76 \mathrm{~g}, 10.7 \mathrm{mmol})$ was added to a solution of $1,3-$ bis(bromomethyl)-5-iodobenzene (1-Br) ($1.90 \mathrm{~g}, 4.87 \mathrm{mmol}$) in dry DMF (7.4 mL). The mixture was stirred for 18 h at room temperature. Subsequently, the product was precipitated by adding $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$. The precipitate was collected by filtration and washed with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$. The crude product was purified via column chromatography (cyclohexane/EtOAc 12:1) to yield iodide 1-OC($\left(\mathrm{CF}_{3}\right)_{3}(2.99 \mathrm{~g}, 88 \%)$ as a white solid.
m.p. $108^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.72$ (cyclohexane/EtOAc 12:1); IR (ATR): $\tilde{v}=1574$ (w), 1451 (vw), 1396 (vw), 1243 (s), 1181 (m), 1131 (s), 1011 (m), 968 (s), 867 (m), 827 (vw), 770 (w), 736 (m), 725 (s), 659 (w), 598 (w), 570 (w), 538 (m), 512 (w), 490 (w) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.00\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$), $7.32\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.66$ (s, $2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=69.9\left(-, \mathrm{CH}_{2}\right), 80.1\left(\mathrm{C}_{\mathrm{q}}\right.$, decet, $\left.{ }^{2} J_{\mathrm{C}, \mathrm{F}}=30 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CF}_{3}\right)_{3}\right)$, $94.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 120.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{q},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=293 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 125.8\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 136.7\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 137.6$ $\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-70.1\left(\mathrm{~s}, \mathrm{CF}_{3}\right) \mathrm{ppm}$; EI MS: m/z (\%): 700 (94) $[\mathrm{M}]^{+}, 681$ (13) $[\mathrm{M}-\mathrm{F}]^{+}, 573$ (80) $[\mathrm{M}-\mathrm{I}]^{+}, 465$ (100) $\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{~F}_{9} \mathrm{O}\right]^{+}$; HRMS: m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{7} \mathrm{~F}_{18} \mathrm{IO}_{2}$: 699.9203; found: 669.9201.

((3,5-Bis((perfluoro-tert-butoxy)methyl)phenyl)ethynyl)trimethylsilane (2-SiMe ${ }_{3}$):

After purification (chromatography with cyclohexane as eluent) trimethylsilylalkyne 2$\mathrm{SiMe}_{3}(2.47 \mathrm{~g}, 89 \%)$ was obtained as white solid from iodide $1-\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}(2.90 \mathrm{~g}$, 4.14 mmol) after stirring for 4 h according to general procedure 1 by using 29 mL dry $\mathrm{NEt}_{3}, 14.5 \mathrm{~mL}$ dry THF, 30 mL NH 44 cl solution and $3 \times 60 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for the extraction.
m.p. $151^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.39$ (cyclohexane); IR (ATR): $\tilde{v}=2971$ (vw), 2155 (vw), 1603 (vw), 1459 (vw), 1396 (vw), 1248 (m), 1180 (w), 1136 (m), 1006 (w), 970 (m), 929 (w), 907 (vw), 875 (w), 842 (m), 779 (vw), 760 (w), 736 (w), 725 (w), 670 (w), 627 (vw), 538 (w), 496 (w), 416 (vw) cm ${ }^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.26\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.01(\mathrm{~s}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 7.31\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.41\left(\mathrm{~d},{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.0\left(+, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 70.5\left(-, \mathrm{CH}_{2}\right), 79.9\left(\mathrm{C}_{\mathrm{q}}\right.$, decet, ${ }^{2} J_{\mathrm{C}, \mathrm{F}}=30 \mathrm{~Hz}$, $\left.\mathrm{C}\left(\mathrm{CF}_{3}\right)_{3}\right), 96.0\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C} \equiv \mathrm{C}\right), 103.7\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C} \equiv \mathrm{C}\right), 120.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{q},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=295 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 124.3\left(\mathrm{C}_{\mathrm{q}}\right.$, $\left.\mathrm{C}_{\mathrm{ar}}\right), 126.7\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 131.4\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 135.8\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (376.5 MHz , CDCl_{3}): $\delta=-70.1\left(\mathrm{~s}, \mathrm{CF}_{3}\right) \mathrm{ppm}$; EI MS: $m / z(\%): 670(97)[\mathrm{M}]^{+}, 655(100)\left[\mathrm{M}_{-} \mathrm{CH}_{3}\right]^{+}$, 439 (100) $\left[\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~F}_{8} \mathrm{O}\right]^{+}, 435$ (54) [M-C $\left.\mathrm{C}_{4} \mathrm{~F}_{9} \mathrm{O}\right]+$; HRMS: m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~F}_{18} \mathrm{O}_{2} \mathrm{Si}$: 670.0632; found: 670.0630.

1-Ethynyl-3,5-bis((perfluoro-tert-butoxy)methyl)benzene (2-H):

Alkyne 2-H ($2.17 \mathrm{~g},>99 \%$) was obtained as white solid from trimethylsilylalkyne 2- $\mathrm{SiMe}_{3}(2.46 \mathrm{~g}, 3.66 \mathrm{mmol})$ according to general procedure 2 by using 90 mL dry methanol as solvent.
m.p. $119^{\circ} \mathrm{C}$; IR (ATR): $\tilde{v}=3316$ (w), 1386 (vw), 1244 (m), 1182 (w), 1137 (m), 1001 (m), 969 (m), 907 (vw), 876 (w), 805 (vw), 771 (vw), 736 (w), 725 (m), $650(\mathrm{w}), 627(\mathrm{w})$, 538 (w), 495 (w) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.13$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}$), 5.03 (s, 4 $\mathrm{H}, \mathrm{CH}_{2}$), $7.33\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=70.4\left(-, \mathrm{CH}_{2}\right), 78.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C} \equiv \mathrm{C}\right), 80.1\left(\mathrm{C}_{\mathrm{q}}\right.$, decet, $\left.{ }^{2} J_{\mathrm{C}, \mathrm{F}}=30 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CF}_{3}\right)_{3}\right), 82.5\left(\mathrm{C}_{\mathrm{q}}\right.$, $\mathrm{C} \equiv \mathrm{C}), 120.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{q},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=293 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 123.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 126.8\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 131.4\left(+, \mathrm{CH}_{\mathrm{ar}}\right)$, $136.0\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-70.1\left(\mathrm{~s}, \mathrm{CF}_{3}\right) \mathrm{ppm}$; EI MS: m / z (\%): $598(100)[\mathrm{M}]^{+}, 363(65)\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{~F}_{9} \mathrm{O}\right]^{+}, 115(62)\left[\mathrm{M}-\mathrm{C}_{9} \mathrm{HF}_{18} \mathrm{O}_{2}\right]^{+}$; HRMS: m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{~F}_{18} \mathrm{O}_{2}: 598.0237$; found: 598.0238 .

1,1'-((5-Iodo-1,3-phenylene)bis(methylene))bis(4-(3,5-bis((perfluoro-tert-butoxy)-methyl)phenyl-1 $\mathrm{H}-1,2,3$-triazole) (3):

After purification (chromatography with eluent cyclohexane/EtOAc 2:1) iodide $\mathbf{3}$ (1.73 g , 92%) was obtained as white solid from alkyne $2-\mathrm{H}(1.65 \mathrm{~g}, 2.76 \mathrm{mmol})$ according to general procedure 3 by using 15 mL dry THF, 60 mL half-saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and $2 \times 100 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for the extraction.
m.p. $190^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.30$ (cyclohexane/EtOAc 2:1); IR (ATR): $\tilde{v}=1573$ (vw), 1468 (vw), 1390 (vw), 1243 (s), 1140 (m), 1049 (w), 1012 (m), 968 (m), 870 (w), 799 (w), 772 (w), 753 (w), 736 (m), 726 (m), 658 (vw), 603 (vw), 538 (w), 493 (w) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR
(400 MHz, CDCl_{3}): $\delta=5.09\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 5.53\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 7.24\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.36(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}$), $7.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.76\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=53.2\left(-, \mathrm{CH}_{2}\right), 70.8\left(-, \mathrm{CH}_{2}\right), 80.1\left(\mathrm{C}_{\mathrm{q}}, \operatorname{decet},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=30 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CF}_{3}\right)_{3}\right), 95.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right)$, $120.2\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 120.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{q},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=293 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 125.3\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 126.6\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 126.8$ $\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 131.3\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 136.5\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 137.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 137.8\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 147.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right)$ ppm; ${ }^{19} \mathrm{~F}$ NMR ($376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-70.1\left(\mathrm{~s}, \mathrm{CF}_{3}\right) \mathrm{ppm}$; MALDI-TOF MS: m/z: $1533[\mathrm{M}+\mathrm{Na}]^{+}, 1511[\mathrm{M}+\mathrm{H}]^{+}$.

1,1 '-((5-((Trimethylsilyl)ethynyl)-1,3-phenylene)bis(methylene))bis(4-(3,5-bis((perfluoro-tert-butoxy)methyl)phenyl-1H-1,2,3-triazole) (4-SiMe ${ }_{3}$):

After purification (chromatography with eluent cyclohexane/EtOAc 2:1) trimethylsilylalkyne $4-\mathrm{SiMe}_{3}(1.53 \mathrm{~g}, 94 \%$) was obtained as white solid from iodide 3 $(1.65 \mathrm{~g}, 1.09 \mathrm{mmol})$ after stirring overnight according to general procedure 1 by using 8 mL dry $\mathrm{NEt}_{3}, 4 \mathrm{~mL}$ dry THF, 15 mL NH 44 solution and $3 \times 30 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ for the extraction.
m.p. $129^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.30$ (cyclohexane/EtOAc 2:1); IR (ATR): $\tilde{v}=1462$ (vw), 1249 (m), 1138 (m), 1050 (vw), 1010 (w), 970 (w), 845 (w), 736 (w), 538 (vw), 490 (vw) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.22\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.08\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 5.54(\mathrm{~s}, 4 \mathrm{H}$, CH_{2}), $7.23\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right)$, $7.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.42\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.76$ (s, $4 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.1\left(+, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 53.7\left(-, \mathrm{CH}_{2}\right)$, $70.8\left(-, \mathrm{CH}_{2}\right), 80.1\left(\mathrm{C}_{\mathrm{q}}\right.$, decet, $\left.{ }^{2} J_{\mathrm{C}, \mathrm{F}}=30 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CF}_{3}\right)_{3}\right), 97.3\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C} \equiv \mathrm{C}\right), 102.9\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C} \equiv \mathrm{C}\right)$, $120.1\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 120.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{q},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=293 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 125.3\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 125.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 126.6$ $\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 127.4\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 131.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 131.8\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 136.1\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 136.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right)$, $147.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-70.1\left(\mathrm{~s}, \mathrm{CF}_{3}\right) \mathrm{ppm}$; MALDITOF MS: m/z: $1503[\mathrm{M}+\mathrm{Na}]^{+}, 1481[\mathrm{M}+\mathrm{H}]^{+}$.

1,1'-((5-Ethynyl-1,3-phenylene)bis(methylene))bis(4-(3,5-bis((perfluoro-tert-butoxy)-methyl)phenyl-1 $\mathrm{H}-1,2,3$-triazole) (4-H):

Alkyne 4-H ($1.28 \mathrm{~g}, 93 \%$) was obtained as white solid from trimethylsilylalkyne 4-SiMe ${ }_{3}$ $(1.44 \mathrm{~g}, 972 \mu \mathrm{~mol})$ according to general procedure 2 by using 30 mL dry methanol as solvent.
m.p. $177{ }^{\circ} \mathrm{C}$; IR (ATR): $\tilde{v}=1603$ (vw), 1468 (vw), 1390 (vw), 1244 (s), 1140 (m), 1049 (w), 1012 (m), 968 (m), 870 (w), 799 (w), 772 (w), 756 (w), 736 (m), 726 (m), 657 (w), 538 (w), 492 (w) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.13$ (s, $1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}$), 5.08 (s, 8 $\mathrm{H}, \mathrm{CH}_{2}$), $5.56\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 7.26\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.41\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right)$, $7.76\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=53.6\left(-, \mathrm{CH}_{2}\right)$, $70.8\left(-, \mathrm{CH}_{2}\right)$, $79.7\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C} \equiv \mathrm{C}\right), 80.1\left(\mathrm{C}_{\mathrm{q}}, \operatorname{decet},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=30 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CF}_{3}\right)_{3}\right), 81.9\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C} \equiv \mathrm{C}\right), 120.2\left(+, \mathrm{CH}_{\mathrm{ar}}\right)$, $120.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{q},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=293 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 124.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 125.3\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 126.6\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 127.7$ $\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 131.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 131.9\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 136.3\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 136.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 147.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right)$ ppm; ${ }^{19} \mathrm{~F}$ NMR ($376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-70.1\left(\mathrm{~s}, \mathrm{CF}_{3}\right) \mathrm{ppm}$; MALDI-TOF MS: m/z: $1471[\mathrm{M}+\mathrm{Cu}]^{+}, 1447[\mathrm{M}+\mathrm{K}]^{+}, 1431[\mathrm{M}+\mathrm{Na}]^{+}, 1409[\mathrm{M}+\mathrm{H}]^{+}$.

$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime}{ }^{\prime}$-(((1,1’-((5-Iodo-1,3-phenylene)bis(methylene))bis(1H-1,2,3-triazole-4,1-diyl))bis(benzene-5,3,1-triyl))tetrakis-(methylene))tetrakis(4-(3,5-bis((perfluoro-tert-butoxy)methyl)phenyl)-1H-1,2,3-triazole) (5):

After purification (chromatography with eluent cyclohexane/EtOAc 2:3) iodide 5 ($722 \mathrm{mg}, 77 \%$) was obtained as white solid from alkyne $4-\mathrm{H}(1.00 \mathrm{~g}, 710 \mu \mathrm{~mol}$) according to general procedure 3 by using 5 mL dry THF, 30 mL half-saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and $2 \times 50 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for the extraction.
m.p. $138-142{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.19$ (cyclohexane/EtOAc 2:3); IR (ATR): $\tilde{v}=1771(\mathrm{vw}), 1468$ (vw), 1245 (s), 1144 (m), 1048 (w), 1012 (m), 969 (m), 870 (w), 772 (w), 736 (m), 726 (m), 538 (w), 491 (vw) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.04$ (s, $16 \mathrm{H}, \mathrm{CH}_{2}$), 5.44 (s, $4 \mathrm{H}, \mathrm{CH}_{2}$), $5.53\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 7.12\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.33(\mathrm{~s}, 4 \mathrm{H}$, $\mathrm{CH}_{\mathrm{ar}}$), $7.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.72\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.82\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right)$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=53.1\left(-, \mathrm{CH}_{2}\right)$, $53.8\left(-, \mathrm{CH}_{2}\right)$, $70.8\left(-, \mathrm{CH}_{2}\right), 80.0$ $\left(\mathrm{C}_{\mathrm{q}}, \operatorname{decet},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=30 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CF}_{3}\right)_{3}\right)$, $95.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right)$, $120.4\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 120.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{q}\right.$, $\left.{ }^{1} J_{\mathrm{C}, \mathrm{F}}=293 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 120.7\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 125.2\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 125.7\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 126.6\left(+, \mathrm{CH}_{\mathrm{ar}}\right)$, $126.8\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 127.3\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 131.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 132.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 136.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 136.6$ $\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 137.4\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 137.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 146.9\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 147.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-70.2$ (s, CF_{3}) ppm; MALDI-TOF MS: m/z: $3153[\mathrm{M}+\mathrm{Na}]^{+}$, $3131[\mathrm{M}+\mathrm{H}]^{+}$.
$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}-\left(\left(\left(1,1^{\prime}-((5-((T r i m e t h y l s i l y l) e t h y n y l)-1,3-p h e n y l e n e) b i s(m e t h y l e n e)) b i s(1 H-\right.\right.\right.$ 1,2,3-triazole-4,1-diyl))bis(benzene-5,3,1-triyl))tetrakis(methylene))tetrakis(4-(3,5-bis((perfluoro-tert-butoxy)methyl)-phenyl)-1H-1,2,3-triazole) (6-SiMe ${ }_{3}$):

After purification (chromatography with eluent cyclohexane/EtOAc 2:3) trimethylsilylalkyne $\mathbf{6}-\mathrm{SiMe}_{3}(545 \mathrm{mg}, 82 \%$) was obtained as white solid from iodide 5 $(670 \mathrm{mg}, 214 \mu \mathrm{~mol})$ after stirring overnight according to general procedure 1 by using 2 mL dry $\mathrm{NEt}_{3}, 1 \mathrm{~mL}$ dry THF, 10 mL NH 44 solution and $3 \times 20 \mathrm{mLCH} \mathrm{Cl}_{2}$ for the extraction.
m.p. $131-136{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.22$ (cyclohexane/EtOAc 2:3); IR (ATR): $\tilde{v}=1771$ (vw), 1616 (vw), 1466 (vw), 1245 (m), 1144 (w), 1048 (w), 1012 (w), 969 (w), 845 (w), 758 (vw), 736 (w), 726 (w), 605 (vw), 538 (w), 490 (vw), 423 (vw) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.18\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.05\left(\mathrm{~s}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 5.48\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 5.55(\mathrm{~s}, 8 \mathrm{H}$, CH_{2}), $7.13\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right)$, $7.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.33\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.37\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.73$ (s, $10 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}$), $7.75\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.81\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=-0.3\left(+, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 53.6\left(-, \mathrm{CH}_{2}\right), 53.9\left(-, \mathrm{CH}_{2}\right), 70.8\left(-, \mathrm{CH}_{2}\right), 80.1\left(\mathrm{C}_{\mathrm{q}}\right.$, $\left.\operatorname{decet},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=30 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CF}_{3}\right)_{3}\right), 97.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C} \equiv \mathrm{C}\right), 102.8(\mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 120.3\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 120.5$ $\left(\mathrm{C}_{\mathrm{q}}, \mathrm{q}^{1}{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=293 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 120.6\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 125.2\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 125.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 125.8(+$, $\left.\mathrm{CH}_{\mathrm{ar}}\right), 126.6\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 127.3\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 127.4\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 131.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 131.9\left(+, \mathrm{CH}_{\mathrm{ar}}\right)$, $132.5\left(\mathrm{Cq}, \mathrm{C}_{\mathrm{ar}}\right), 135.9\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 136.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 136.7\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 146.9\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 147.4\left(\mathrm{C}_{\mathrm{q}}\right.$, C_{ar}) ppm; ${ }^{19} \mathrm{~F}$ NMR ($376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-70.2\left(\mathrm{~s}, \mathrm{CF}_{3}\right) \mathrm{ppm}$; MALDI-TOF MS: m / z : $3123[\mathrm{M}+\mathrm{Na}]^{+}$.

$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}-(((1,1$ '-((5-Ethynyl)-1,3-phenylene)bis(methylene))bis(1H-1,2,3-triazole-4,1-diyl))bis(benzene-5,3,1-triyl))-tetrakis(methylene))tetrakis(4-(3,5-bis((perfluoro-tert-butoxy)methyl)phenyl)-1 $\mathbf{H}-1,2,3-$ triazole) ($6-\mathrm{H}$):

Alkyne 6-H (456 mg , 92\%) was obtained as white solid from trimethylsilylalkyne 6-SiMe ${ }_{3}$ ($505 \mathrm{mg}, 163 \mu \mathrm{~mol}$) according to general procedure 2 by using 6 mL dry methanol as solvent.
m.p. $153-160{ }^{\circ} \mathrm{C}$; IR (ATR): $\tilde{v}=1614$ (vw), 1468 (vw), 1244 (m), 1142 (m), 1048 (w), 1012 (w), 968 (m), 869 (w), 799 (w), 771 (w), 756 (vw), 736 (w), 726 (m), 660 (vw), 538 (w), 492 (vw) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.07$ (s, $1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}$), 5.05 (s, 16 H ,
$\left.\mathrm{CH}_{2}\right), 5.49\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 5.55\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 7.15\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.33$ (s, $4 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}$), $7.36\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.73\left(\mathrm{~m}_{\mathrm{c}}, 10 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.75\left(\mathrm{~m}_{\mathrm{c}}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.81(\mathrm{~s}, 4$ $\left.\mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=53.6\left(-, \mathrm{CH}_{2}\right), 53.9\left(-, \mathrm{CH}_{2}\right), 70.8(-$, $\left.\mathrm{CH}_{2}\right), 79.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C} \equiv \mathrm{C}\right), 80.1\left(\mathrm{C}_{\mathrm{q}}, \operatorname{decet},{ }^{2} J_{\mathrm{C}, \mathrm{F}}=30 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CF}_{3}\right)_{3}\right), 81.7\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C} \equiv \mathrm{C}\right), 120.3(+$, $\left.\mathrm{CH}_{\mathrm{ar}}\right), 120.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{q},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=293 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 120.7\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 124.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 125.2\left(+, \mathrm{CH}_{\mathrm{ar}}\right)$, $125.8\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 126.6\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 127.3\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 127.7\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 131.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 131.9$ $\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 132.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 136.1\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 136.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 136.7\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 146.9\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right)$, $147.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-70.2\left(\mathrm{~s}, \mathrm{CF}_{3}\right) \mathrm{ppm}$; MALDITOF MS: m/z: $3067[\mathrm{M}+\mathrm{K}]^{+}$.
$1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime \prime}-(((1,1 '-((5-(1-(2,5,8,11,14,17,20,23,26,29,32,35-D o d e c a o x y h e p t a t r i a c o n t a n-~$ 37-yl)-1H-1,2,3-triazole-4-yl)-1,3-phenylene)bis(methylene))bis(1H-1,2,3-triazole-4,1-diyl))bis(benzene-5,3,1-triyl))tetrakis(methylene))tetrakis(4-(3,5-bis-((perfluoro-tert-butoxy)methyl)phenyl)-1H-1,2,3-triazole) (7):
O-(2-Azidoethyl)- O^{\prime}-methylundecaethylene glycol ($42.2 \mathrm{mg}, 72.0 \mu \mathrm{~mol}$) was added to a solution of alkyne $6-\mathrm{H}(109 \mathrm{mg}, 36.0 \mu \mathrm{~mol}), \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right){ }_{4} \mathrm{PF}_{6}(2.7 \mathrm{mg}, 7.20 \mu \mathrm{~mol})$ and 2,6-lutidine $(1.0 \mu \mathrm{~L}, 7.20 \mu \mathrm{~mol})$ in dry THF $(1 \mathrm{~mL})$ under argon atmosphere. The mixture was stirred for 2.5 d at room temperature. Afterwards $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added and the product was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The solvent was evaporated under reduced pressure. The crude product was purified via RP-HPLC to yield triazole 7 ($40.6 \mathrm{mg}, 31 \%$) as a viscous, colorless oil.

IR (ATR): $\tilde{v}=3128$ (vw), 2876 (vw), 1768 (vw), 1614 (vw), 1468 (vw), 1246 (m), 1144 (m), 1049 (w), 1012 (w), 969 (m), 841 (w), 772 (vw), 757 (vw), 736 (w), 726 (m), 538 (w), 492 (vw) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{TFA}$): $\delta=3.37$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 3.53-3.65 (m, $44 \mathrm{H}, \mathrm{CH}_{2}$), 3.86-3.94 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 4.56-4.65 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $5.04\left(\mathrm{~s}, 16 \mathrm{H}, \mathrm{CH}_{2}\right)$, $5.59\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 5.62\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 7.38\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.41\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.44(\mathrm{~s}, 2$ $\mathrm{H}, \mathrm{CH}_{\mathrm{ar}}$), $7.66\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.87\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 8.03-8.14\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 8.21-8.37(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{TFA}$): $\delta=51.5\left(-, \mathrm{CH}_{2}\right)$, $54.4\left(-, \mathrm{CH}_{2}\right)$, $58.8\left(+, \mathrm{CH}_{3}\right), 68.8\left(-, \mathrm{CH}_{2}\right), 69.1-70.1\left(\mathrm{~m},-, \mathrm{CH}_{2}\right), 70.3\left(-, \mathrm{CH}_{2}\right), 70.5\left(-, \mathrm{CH}_{2}\right), 71.4(-$, $\left.\mathrm{CH}_{2}\right), 80.0\left(\mathrm{C}_{\mathrm{q}}\right.$, decet, $\left.{ }^{2} J_{\mathrm{C}, \mathrm{F}}=30 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CF}_{3}\right)_{3}\right), 120.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{q},{ }^{1} J_{\mathrm{C}, \mathrm{F}}=293 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.9$ $\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 122.7\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 123.7\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 125.5\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 126.9\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 127.0(+$, $\left.\mathrm{CH}_{\mathrm{ar}}\right), 127.3\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 128.8\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 129.0\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 129.4\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 130.3\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right)$,
$130.7\left(+, \mathrm{CH}_{\mathrm{ar}}\right), 136.2\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 136.3\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 136.8\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 144.9\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right), 146.1\left(\mathrm{C}_{\mathrm{q}}\right.$, $\left.\mathrm{C}_{\mathrm{ar}}\right), 146.7\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}_{\mathrm{ar}}\right) \mathrm{ppm} ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{TFA}\right): \delta=-70.8\left(\mathrm{~s}, \mathrm{CF}_{3}\right) \mathrm{ppm}$; MALDI-TOF MS: m/z: 3635 [M-H+Na] ${ }^{+}$.

3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

Figure S1. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of molecule $\mathbf{1 - O C}\left(\mathrm{CF}_{3}\right)_{3}$.

Figure S2. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of molecule $\mathbf{1 - O C}\left(\mathrm{CF}_{3}\right)_{3}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of molecule 2- SiMe_{3}.

Figure S4. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of molecule $\mathbf{2}-\mathrm{SiMe}_{3}$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of molecule 2- H .

Figure $\mathrm{S} 6 .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of molecule 2-H.

Figure S7. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of molecule 3.

Figure $\mathrm{S} 8 .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of molecule 3.

Figure S9. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of molecule $4-\mathrm{SiMe}_{3}$.

Figure $\mathrm{S} 10 .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of molecule $4-\mathrm{SiMe}_{3}$.

Figure $\mathrm{S} 11 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of molecule $4-\mathrm{H}$.

Figure $\mathrm{S} 12 .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of molecule $4-\mathrm{H}$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of molecule 5 .

Figure S14. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of molecule 5.

Figure $\mathrm{S} 15 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of molecule $\mathbf{6}$ - SiMe_{3}.

Figure S16. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of molecule $\mathbf{6}-\mathrm{SiMe}_{3}$.

Figure S17. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of molecule $\mathbf{6 - H}$.

Figure S18. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of molecule $6-\mathrm{H}$.

Figure S19. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of molecule 7.

Figure S20. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of molecule 7.

4. Crystallographic Data

Crystal Structure Determinations
The single-crystal X-ray diffraction studies were carried out on a Bruker-Nonius KappaCCD diffractometer at $123(2) \mathrm{K}$ using MoK α radiation ($\lambda=0.71073 \AA$). Direct methods (SHELXS-97) ${ }^{2}$ were used for structure solution and refinement was carried out using SHELXL-97 (full-matric least-squares on F2). Non hydrogen atoms were refined anisotropically. Hydrogen atoms were localized by difference electron density determination and refined using a riding model. A semi-empirical absorption correction was applied.

1- $\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}$: colourless crystals, $\mathrm{C}_{16} \mathrm{H}_{7} \mathrm{~F}_{18} \mathrm{IO}_{2}, M=700.12$, crystal size $0.36 \times 0.08 \times$ 0.04 mm , triclinic, space group P-1 (No. 2), $a=7.2087(4) \AA, b=11.5510(9) \AA, c=$ $14.1610(8) \AA, \alpha=68.222(5)^{\circ}, \beta=76.825(5)^{\circ}, \gamma=73.919(7)^{\circ}, V=1041.75(12) \AA^{3}, Z=2$, $\rho($ calc $)=2.232 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=668, \mu=1.711 \mathrm{~mm}^{-1}, 13325$ reflections $\left(2 \theta_{\max }=55^{\circ}\right)$, 4754 unique $\left[\mathrm{R}_{\mathrm{int}}=0.031\right.$], 334 parameters, $R 1$ (for $\left.4448 I>2 \sigma(I)\right)=0.025$, wR2 (all data $)=0.062, \mathrm{~S}=1.06$, largest diff. peak and hole 0.624 and -0.650 e \AA^{-3}.

Figure S21. Molecular structure of iodide $1-\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}$ (displacement parameters are drawn at 50% probability level).

2-H: colourless crystals, $\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{~F}_{18} \mathrm{O}_{2}, M=598.24$, crystal size $0.18 \times 0.06 \times 0.02 \mathrm{~mm}$, triclinic, space group P-1 (No. 2), $a=7.0303(4) \AA, b=11.8119(10) \AA, c=14.0402(19) \AA$, $\alpha=68.704(8)^{\circ}, \beta=79.860(6)^{\circ}, \gamma=74.572(5)^{\circ}, V=1043.05(18) \AA^{3}, Z=2, \rho($ calc $)=1.905$ $\mathrm{Mg} \mathrm{m}^{-3}, F(000)=588, \mu=0.231 \mathrm{~mm}^{-1}, 3684$ reflections $\left(2 \theta_{\max }=50^{\circ}\right), 3648$ unique $\left[\mathrm{R}_{\text {int }}\right.$
$=0.000]$, 344 parameters, $R 1$ (for $2620 I>2 \sigma(I))=0.068$, wR2 (all data) $=0.186, \mathrm{~S}=$ 1.15, largest diff. peak and hole 0.468 and -0.343 e \AA^{-3}, non-merohedral twin with 2 domains $($ BASF $=0.244(4)$, a HKLF 5 file used in the refinement).

Figure S22. Molecular structure of alkyne 2-H (displacement parameters are drawn at 50\% probability level).

Crystallographic data (excluding structure factors) for the structures reported in this work have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC $981372\left(1-\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)$ and $\mathrm{CCDC} 981373(2-\mathrm{H})$. Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: int.code+(1223)336-033; E-mail: deposit@ccdc.cam.ac.uk).

5. References

1 B. Sookcharoenpinyo, E. Klein, Y. Ferrand, D. B. Walker, P. R. Brotherhood, C. Ke, M. P. Crump, A. P. Davis, Angew. Chem., 2012, 124, 4664; Angew. Chem. Int. Ed., 2012, 51, 4586.

2
G. M. Sheldrick, Acta Cryst., 2008, A64, 112.

[^0]: * Corresponding author: Prof. Dr. Stefan Bräse, E-mail: braese@kit.edu; Fax: +49-721-60842903

