Cathodic and anodic photocurrents generation from melem

and its derivatives

Xiaoqing Wei, Yu Qiu,* Weiyuan Duan, and Zhengxin Liu*

^a Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 235 Chengbei Road, Shanghai, P. R. China. Fax: +86 (0) 21-69976902; Tel: +86 (0) 21-69976901; E-mail: <u>z.x.liu@mail.sim.ac.cn</u>

*Yu Qiu, current affiliation: Institute of Advanced Photovoltaics, Fujian Jiangxia University, Fuzhou 350108, China. E-mail: yqiu78@hotmail.com.

Fig. S1 Current-potential curves of ITO/PEDOT:PSS/M-x electrodes in 0.1 M KCl.

		Table ST	BET surface areas of the samples.				
Sample	M-400	M-450	M-500	M-550	M-600	M-650	
S _{BET} (m ² /g)	3.9	5.6	6.7	7.4	8.5	9.8	

 Table S1
 BET surface areas of the samples.

Fig. S2 SEM images of M-400 (a), M-450 (b), M-500 (c), M-550 (d), M-600 (e), M-650 (f).

Fig. S3 Proposed reaction mechanism of water oxidation and Reduction by graphitic carbon nitride nanorods.²³

Fig. S4 Photocurrent generation from ITO/PEDOT:PSS/M-x electrodes at -0.2 V and 0.8 V vs Ag/AgCl in 0.1 M KCl.

Fig. S5 Photocurrent response from ITO/PEDOT:PSS/M-450 electrode at -0.2 V and 0.8 V vs Ag/AgCl in 0.1 M KCl.