Electronic supplementary information

Insight into the high reactivity of commercial Fe-Si-B

amorphous zero-valent iron in degrading azo dye solutions

Y. Tang^a, Y. Shao^a, N. Chen^a, S.Q. Chen^a, X. Liu^a, K.F. Yao^{a*}

^{*a*} School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China

Corresponding author: Ke-Fu Yao. E-mail: kfyao@tsinghua.edu.cn.

Phone:+86-10-62772292. Fax: +86-10-62770190.

S1. XPS results for iron materials before and after decomposition.

Spectra 1 line	Species	Fe-Si-B ^{AR}		Fe-Si-B ^{CR}		Fe ^{CP}		Fe-Si-B ^{AD}	
		BE (eV)	FWH M (eV)	BE (eV)	FWH M (eV)	BE (eV)	FWH M (eV)	BE (eV)	FWH M (eV)
Fe 2p _{3/2}	Fe ⁰	706. 6	1.05	-	-	-	-	-	-
	Fe-Si/B	707. 6	1.21	707. 8 708. 9	1.1 1.88	-	-		
	Fe ⁿ⁺ 1	710. 3	2.35			710. 2	3.07	710. 5	1.79
	Fe ⁿ⁺ 1	711. 5	4.04	711. 3	3.29	711. 5	3.91	711. 5	2.59
	Fe ₂ (SO ₄)	-	-	-	-	-	-	713. 4	2.1
O 1s	O ²⁻	529. 8	0.87			529. 7	1.2	530. 2	1.19
	OH-	531.	2.13	531.	2.22	531.	2.53	531.	1.93

		1		1		0	6	
	O-Si/B	532. 2	1.23	533. 0	1.73			
B 1s	B ⁰	187. 7	0.83					
	B-Fe	-		189. 5	1			
	B ³⁺ -1	192. 0	2.11	192. 5	1.67		192. 4	1.73
	B ³⁺ -2	-		193. 7	1.05			
Si 2p	Si ⁰	99.3	1.14				99.9	1.82
	Si _x O			100. 7	1.3			
	Si ²⁺	102. 4	1.81				102. 4	1.68
	Si ⁴⁺			103. 8	1.86			

The red number shown in the table is mainly due to the inaccuracy in determining the

FWHM of boron.

S2. UV-vis spectroscopy and normalized concentration of Methyl Orange during the

UV-vis spectroscopy ((a), (b), (c)) and normalized concentration (d) of Methyl Orange during the decomposition process: Uv-vis spectroscopy of different iron materials, (a) Fe-Si-B^{AR}; (b) Fe-Si-B^{CR}; (c) Fe^{CP}. (Experimental conditions: 25 mg/L Methyl Orange, 10 g/L ribbons or powders, 25 °C, without addition any other reagents.)

decomposition process at 25 °C, initial pH=6.