Porous graphene-carbon nanotube hybrid paper as flexible nano-scaffold for polyaniline immobilization and application in all-solid-state supercapacitors[†]

Wei Fan, Yue-E Miao, Longsheng Zhang, Yunpeng Huang and Tianxi Liu*

Electronic Supplementary Information

Fig. S1 (a) AFM image and (b) corresponding height profile of GO.

Fig. S2 Cross-sectional FESEM images of porous graphene paper at (a) low and (b) high magnifications, respectively.

Fig. S3 Nitrogen sorption isotherms of porous graphene paper.

Fig. S4 FESEM images of the surface of (a, d) p-GC/PANI1, (b, e) p-GC/PANI3, and (c, f) p-GC/PANI5 hybrid papers at (a-c) low and (b-f) high magnifications, respectively.

Fig. S5 TGA curves of p-GC, PANI, p-GC/PANI1, p-GC/PANI3 and p-GC/PANI5 papers (heating rate of 10 °C min⁻¹ under a nitrogen atmosphere).

Fig. S6 Thickness effect study. FESEM images of the cross-section of p-GC paper at low magnification with different thicknesses of (a) ~ 11 μ m and (b) ~ 19 μ m. (c) CV curves of p-GC paper with different thicknesses.

Fig. S7 CV curves of p-GC/PANI3 paper at different scan rates of 10, 20, 50, 100, and 200 mV s⁻¹, respectively.

Fig. S8 Electrochemical characterization of graphene-CNT/PANI hybrid papers with different porous structures: (a) Galvanostatic charge/discharge curves of GC/PANI3, p-0.5-GC/PANI3 and p-GC/PANI3 hybrid papers at a current density of 1 A g⁻¹; (b) C_s of hybrid papers against the total weight of PANI and GC, and C_s of PANI against its own weight.

Fig. S1

Fig. S2

Fig. S3

Fig. S4

Fig. S5

Fig. S6

Fig. S7

Fig. S8