Oleic acid: A benign Brønsted acidic catalyst for densely substituted indole derivatives synthesis

Asaithampi Ganesan,^{*a*} Jagatheeswaran Kothandapani,^{*a*} Jagadeesh Babu Nanubolu^{*b*} and Subramaniapillai Selva Ganesan,^{*a*}

Experimental Section

General

All the chemicals were purchased from Sigma Aldrich, Loba chemicals, Merck, Avra synthesis, and SD Fine chemicals. Oleic acid (Pdt No: 61821625001730) was purchased from Merck and was used as such without further purification. All the substrates and reagents were used without further purification. IR spectra were recorded in the FT-IR PerkinElmer instrument. Melting points were recorded in the microscopic melting point meter and were uncorrected. NMR analysis ($H^1 \& C^{13}$) were determined by Bruker Av-300MHz spectrometer.

Representative procedure of bis(indolyl)methane synthesis: A mixture of benzaldehyde (1 mmol, 0.1019 mL), indole (2 mmol, 0.2343 g) and oleic acid (12.5 mol%, 40 μ L) were taken in the 3 ml of distilled water and was stirred at 100 °C for 2 h. After completion of reaction, the reaction mixture was cooled to room temperature and the formed solid were washed with distilled water (3×5 mL) followed by hexane (2×5 mL) for removing oleic acid. The solid mass was further stirred in hexane (10 mL) for 10 minutes and filtered through Whatman filter paper. The product thus obtained was essentially pure.

3-((1*H*-Indol-3-yl)(phenyl)methyl)-1*H*-indole (3a)

Yield: 98%; Appearance: Red solid; mp = 149-151 °C (Ref; 148-152°C)¹; ¹H NMR (300 MHz, CDCl₃): δ 5.88 (s, 1H), 6.63 (s, 2H), 7.00 (t, *J* = 7.5 Hz, 2H), 7.14-7.40 (m, 11H), 7.89 (s, 2H);

3–[1*H*-indole-3-yl(4-nitrophenyl)methyl]-1*H*-indole (3b)

Yield: 99%; Appearance: Yellow Solid; mp = 218-220 °C (Ref; 218-220 °C)²; ¹H NMR (300 MHz, DMSO-d₆): δ 6.03 (s, 1H), 6.85-6.90 (m, 4H), 7.03-7.08 (m, 2H), 7.29 (d, *J* = 7.8 Hz, 2H), 7.37 (d, *J* = 8.1 Hz, 2H), 7.61 (dd, *J* = 8.7 Hz, *J* = 1.2 Hz 2H), 8.15 (dd, *J* = 8.7 Hz, *J* = 2.7 Hz, 2H), 10.94 (s, 2H);

3-[1*H*-indole-3-yl(3-nitrophenyl)methyl]-1*H*-indole (3c)

Yield: 85%; Appearance: Pale Yellow Solid; mp = 263-264 °C (Ref; 264-265 °C)²; ¹H NMR (300 MHz, DMSO-d₆): δ 5.99 (s, 1H), 6.66 (s, 2H), 7.02 (t, *J* = 7.5 Hz, 2H), 7.17-7.25 (m, 3H), 7.34-7.45 (m, 4H), 7.69 (d, *J* = 7.5 Hz, 1H), 7.98 (s, 2H), 8.08 (d, *J*= 8.1 Hz, 1H), 8.21 (s, 1H).

3-[(4-fluorophenyl)(1*H*-indole-3-yl)]-1*H*-indole (3d)

Yield: 92%; Appearance: Reddish brown Solid; mp = 77-79 °C (Ref; 76-78 °C)²; ¹H NMR (300 MHz, CDCl₃): δ 5.87 (s, 1H), 6.65 (d, 2H, *J* = 2.1 Hz), 6.65-7.04 (m, 4H), 7.18 (t, *J* = 9 Hz, 2H), 7.26-7.32 (m, 2H), 7.37 (d, 4H, *J* = 8.7 Hz), 7.95 (s, 2H);

3-[(4-chlorophenyl)(1*H*-indole-3-yl)]-1*H*-indole (3e)

Yield: 96%; Appearance: Reddish brown Solid; mp = 78-80 °C (Ref; 78-80 °C)²; ¹H NMR (300 MHz, CDCl₃): δ 5.89 (s, 1H), 6.65 (s, 2H), 7.00 (t, *J* = 7.5 Hz, 2H), 7.14-7.40 (m, 10H), 7.90 (s, 2H);

Representative procedure for the synthesis of 4*H*-chromene derivatives: A mixture of salicylaldehyde (1 mmol, 0.106 mL), 5,5-dimethyl-1,3-cyclohexanedione (1 mmol, 0.140 g), indole (1 mmol, 0.117 g) and oleic acid (12.5 mol%, 40 μ L) were taken in 3 ml of water and was stirred at 100 °C for 2 h. After completion, the reaction mixture was cooled to room temperature and the formed solid were washed with distilled water (3×5 mL) followed by hexane (2×5 mL) for removing oleic acid. The solid was further stirred with hexane (1×10 mL) for 10 minutes and filtered through Whatman filter paper. The white solid thus obtained was essentially pure. Suitable crystals for the single crystal XRD studies were obtained by crystallizing the product in chloroform and ethyl acetate mixture (2:2 v/v).

9-(1*H*-indol-3-yl)-3,3-dimethyl-2,3,4,9-tetrahydro-1*H*-xanthen-1-one (5a)

Yield:98%; Appearance: white Solid; mp = 189-191 °C (Ref; 189-191 °C)³; ¹H NMR (300 MHz, CDCl₃): δ 0.95 (s, 3H), 1.10 (s, 3H), 2.15-2.28 (m, 2H), 2.50-2.64 (m, 2H), 5.31 (s, 1H), 6.94-7.25 (m, 8H), 7.39 (d, *J* = 8.1 Hz, 1H), 8.11 (br s, 1H)

9-(5-methoxy-1*H*-indol-3-yl)-3,3-dimethyl-2,3,4,9-tetrahydro-1*H*-xanthen-1-one (5b)

Yield:86%; Appearance: white Solid; mp = 106-109 °C (Ref; 100-102 °C)⁴; ¹H NMR (300 MHz, CDCl₃): δ 0.97 (s, 3H), 1.11 (s, 3H), 2.16-2.30 (m, 2H), 2.56 (s, 2H), 3.75 (s, 3H), 5.29 (s, 1H),

6.73 (dd, *J* = 8.7 Hz, *J* = 2.4 Hz, 1H), 6.86 (d, *J* = 2.4 Hz, 1H), 7.00 (td, *J* = 7.2 Hz, *J* = 1.5 Hz 1H), 7.10-7.19 (m, 5H), 7.89 (s, 1H);

9-(2-hydroxynaphthalen-1-yl)-3,3-dimethyl-2,3,4,9-tetrahydro-1*H*-xanthen-1-one (5c)

Yield:73%; Appearance: white Solid; mp = 235-239 °C (Ref; 234–236°C)⁵; ¹H NMR (300 MHz, CDCl₃): δ 0.94 (s, 3H), 1.08 (s, 3H), 2.10 (d, *J* = 16.2Hz, 1H), 2.34 (d, *J* = 16.2 Hz, 1H), 2.54-2.74 (m, 2H), 5.75 (s, 1H), 6.61 (t, *J* = 7.8 Hz, 1H), 6.70 (d, *J* = 8.1 Hz, 1H), 6.85-6.90 (m,1H), 7.0 (d, *J* = 7.5Hz, 1H), 7.38-7.51 (m, 3H), 7.87 (t, *J* = 7.5Hz, 2H), 8.32 (d, *J* = 8.4Hz, 1H), 9.67 (s, 1H).

9-(1*H*-indol-3-yl)-2,3,4,9-tetrahydro-1*H*-xanthen-1-one (5d)

Yield:84%; Appearance: white Solid; mp = 217-220°C; ¹H NMR (300 MHz, CDCl₃): δ 1.88-1.99 (m, 2H), 2.26-2.33 (m, 2H), 2.70-2.77 (m, 2H), 5.21 (s, 1H), 6.88-6.93 (m, 1H), 6.97-7.05 (m, 2H), 7.13-7.18 (m,3H), 7.29(t, *J* = 7.8 Hz,2H), 7.47 (d, *J* = 8.1 Hz, 1H), 10.83 (s, 1H). ¹³C NMR (75 MHz, CDCl3, δ ppm); 20.5, 27.6, 29.0, 37.0, 112.1, 113.6, 116.6, 118.7, 119.1, 120.1, 121.4, 123.1, 125.2, 125.7, 126.2, 128.0, 130.1, 136.9, 149.4, 167.0, 197.4. IR (cm⁻¹): 3430, 3334, 3061, 2947, 2915, 2843, 1636, 1580, 1484, 1378, 1234, 1178, 993, 623. MS (LC): m/z = 316 (M+1).

9-(1-methyl-1*H*-indol-3-yl)-2,3,4,9-tetrahydro-1*H*-xanthen-1-one (5e)

Yield:90%; Appearance: white Solid; mp =116-119 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.88-2.02 (m, 2H), 2.26-2.50 (m, 2H), 2.71-2.77 (m, 2H), 3.67 (s, 3H), 5.20 (s, 1H), 6.93-7.28 (m, 6H), 7.29-7.32 (m, 2H), 7.58 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃, δ ppm); 20.1, 27.1, 28.2, 32.2, 36.6, 109.7, 113.2, 116.1, 118.5, 118.6, 118.9, 120.9, 124.7, 125.6, 125.8, 127.0, 127.4, 129.6, 136.7, 148.9, 166.2, 196.2.IR (cm⁻¹): 3446, 3117, 3061, 2955, 2915, 2883, 1644, 1580, 1484, 1370, 1330, 1242, 1178, 1130, 993, 751, 574, 534. MS (LC): m/z = 330 (M+1).

12-(1*H*-indol-3-yl)-2,3,4,12-tetrahydro-1*H*-5-oxatetraphen-1-one(5f)

Yield:98%; Appearance: white Solid; mp = 235-238 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.74-1.81 (m, 1H), 1.94-2.0 (m, 1H), 2.23-2.36 (m, 2H), 2.73-2.77 (m, 2H), 5.88 (s, 1H), 6.83 (t, *J*= 6.9Hz, 1H), 6.93 (t, *J*= 7.2 Hz, 1H), 7.21-7.48 (m, 6H), 7.87(d, *J* = 8.7 Hz, 2H), 8.17 (d, *J* = 8.4Hz, 1H), 10.85 (s, 1H); ¹³C NMR (75 MHz, CDCl₃, δ ppm); 20.0, 25.8, 26.8, 27.1, 36.5, 38.6, 111.5, 113.8, 116.9, 117.3, 117.9, 118.2, 118.5, 120.5, 122.7, 123.3, 124.1, 124.7, 125.3, 126.8, 128.4, 128.6, 131.0, 136.1, 147.0, 165.1, 196.3; IR (cm⁻¹): 3462, 3342, 3061, 2915, 1644, 1370, 1226, 1186, 993, 945, 807, 751; MS (LC): m/z = 366 (M+1).

12-(1*H*-indol-3-yl)-3,3-dimethyl-2,3,4,12-tetrahydro-1*H*-5-oxatetraphen-1-one (5g)


Yield:88; Appearance: white Solid; mp = 234-237°C; ¹H NMR (300 MHz, CDCl₃): δ 0.80 (s, 3H), 1.05 (s, 3H), 2.05-2.33 (m, 2H), 2.57-2.73 (m, 2H), 5.86 (s, 1H), 6.83 (t, *J* = 7.2 Hz, 1H), 6.92 (t, *J* = 7.5 Hz,1H), 7.21(d, *J* = 7.8 Hz, 1H), 7.33-7.47 (m, 5H), 7.85 (d, *J* = 7.1 Hz, 2H), 8.22 (d, *J* = 7.8 Hz, 1H), 10.85 (s,1H); ¹³C NMR (75 MHz, CDCl₃, δ ppm); 25.9, 26.4, 28.8, 31.7, 50.2, 111.5, 112.5, 117.0, 117.2, 117.7, 118.2, 118.4, 120.5, 123.4, 124.1, 124.7, 125.3, 126.7, 128.4, 128.6, 131.0, 136.1, 146.9, 163.2, 196.1; IR (cm⁻¹): 3440, 3241, 2958, 2914, 1639, 1595, 1373, 1223, 1099, 815, 745, 622; MS (LC): m/z = 394 (M+1).

Procedure for the recyclability of oleic acid catalyst on 4*H*-chromene (5d) synthesis: A mixture of salicylaldehyde (1 mmol, 0.106 mL), 1,3-cyclohexanedione (1 mmol, 0.112 g), indole (1 mmol, 0.117 g) and oleic acid (12.5 mol%, 40 μ L) were taken in 3 ml of water and was stirred at 100 °C for 2 h. After completion, the reaction mixture was decanted to remove aqueous layer and the residue was extracted twice with hexane:ethyl acetate mixture (4.5:0.5 v/v) to remove trace oleic acid catalyst embedded with product 5d. The organic solvents were evaporated and the residue was mixed with the previously isolated aqueous layer. The reaction was repeated by freshly adding substrates to the mixture of recovered oleic acid on water.

Number of cycles	5d Yield (%)
1	84
2	84
3	83
4	81

Representative procedure of spirooxindoles synthesis : A mixture of isatin (1 mmol, 0.147 g) , 5,5-dimethyl-1,3-cyclohexanedione (1mmol, 0.140 g), malononitrile (1 mmol, 63 μ L) and oleic acid (12.5 mol%, 40 μ L) were taken in the 3 ml of ethanol and was stirred at room temperature

for appropriate time. After completion, the reaction mixture was quenched with water and the formed solids were filtered through Whatman filter paper and were washed with distilled water $(3\times5 \text{ mL})$ followed hexane $(2\times5\text{mL})$ for removing oleic acid. The white solid thus obtained was essentially pure.

Sequence (A) Oleic acid in ethanol (B) After addition of isatin and barbituric acid (C) After addition of malononitrile (D) After completion the reaction (E) After quenching with water

7'-amino-2,2',4'-trioxo-1,1',2,2',3',4'-hexahydrospiro[indole-3,5'-pyrano[2,3-d]pyrimidine]-6'-carbonitrile (6a)

Yield: 91% Appearance: white Solid; mp = 273-275 °C (Ref; 277-278 °C)⁶; ¹H NMR (300 MHz, DMSO-d6); δ 6.79 (d, J = 7.5 Hz, 1H), 6.91 (t, J = 7.5 Hz, 1H), 7.12-7.19 (m, 2H), 7.38 (s, 2H), 10.49 (s, 1H), 11.13 (s, 1H), 12.32 (br s, 1H);

2-amino-2',5-dioxo-1',2',5,6,7,8-hexahydrospiro[chromene-4,3'-indole]-3-carbonitrile (6b)

Yield: 90% Appearance: white Solid; mp = 277-279 °C (Ref; 278-280 °C)⁷; ¹H NMR (300 MHz, DMSO-d6); δ 1.92 (t, *J* =6.3Hz, 2H), 2.22-2.23 (m, 2H), 2.66 (t, *J* = 6.0 Hz, 2H), 6.78 (d, *J* = 7.8 Hz, 1H), 6.88 (t, *J* = 7.5 Hz, 1H), 7.00 (d, *J* = 7.2 Hz, 1H), 7.14 (t, *J* = 7.8 Hz, 1H), 7.23 (s, 2H), 10.40 (s, 1H);

2-amino-7,7-dimethyl-2',5-dioxo-1',2',5,6,7,8-hexahydrospiro[chromene-4,3'-indole]-3carbonitrile (6c)

Yield: 97% Appearance: white Solid; mp = 267-270 °C (Ref; 268-270 °C)⁸; ¹H NMR (300 MHz, DMSO-d6); δ 0.99 (s, 3H), 1.03 (s, 3H), 2.09 (d, *J* = 15.9 Hz, 1H), 2.18 (d, *J* = 15.9 Hz, 1H), 2.53 (s, 2H), 6.79 (d, *J* = 7.8 Hz, 1H), 6.89 (t, *J* = 7.5 Hz, 1H), 6.98 (d, *J* = 7.2 Hz, 1H), 7.14 (t, *J* = 7.5 Hz, 1H), 7.24 (s, 2H), 10.41 (s, 1H).

7'-amino-2,4'-dioxo-2'-sulfanylidene-1,1',2,2',3',4'-hexahydrospiro[indole-3,5'-pyrano[2,3d]pyrimidine]-6'-carbonitrile (6d)

Yield: 91% Appearance: white Solid; mp = 239-241 °C (Ref; 238-242 °C)⁹; ¹H NMR (300 MHz, DMSO-d6); δ 6.80 (d, *J* = 7.5 Hz, 1H), 6.92 (t, *J* = 7.5 Hz, 1H), 7.18 (t, *J* = 7.5 Hz, 2H), 7.43 (s, 2H), 10.55 (s, 1H), 12.53 (s, 1H);

ethyl 7'-amino-2,2',4'-trioxo-1,1',2,2',3',4'-hexahydrospiro[indole-3,5'-pyrano[2,3d]pyrimidine]-6'-carboxylate (6e)

Yield: 73% Appearance: white Solid; mp = 189-190 °C (Ref; 189-190 °C)⁶; ¹H NMR (300 MHz, DMSO-d6); δ 0.78 (t, *J* = 7.2 Hz, 3H), 3.71 (q, *J* = 3.3 Hz, 2H), 6.68 (d, *J* = 7.5 Hz, 1H) 6.78 (t, *J* = 7.5 Hz, 1H), 6.95 (d, *J* = 7.2 Hz, 1H), 7.07 (t, *J* = 7.5 Hz, 1H), 7.95 (s, 2H), 10.24 (s, 1H), 10.97 (s, 1H), 12.16 (br s, 1H);

7'-amino-1',3'-dimethyl-2,2',4'-trioxo-1,1',2,2',3',4'-hexahydrospiro[indole-3,5'-pyrano[2,3-d]pyrimidine]-6'-carbonitrile (6f)

Yield: 89%; Appearance: white Solid; mp = 226-227 °C (Ref; 228-229 °C)⁶; ¹H NMR (300 MHz, DMSO-d6) δ 3.02 (s, 3H), 3.38 (s, 3H merged with DMSO-water peak), 6.80 (d, *J* = 7.5 Hz, 1H), 6.91 (t, *J* = 7.2 Hz, 1H), 7.11-7.19 (m, 2H), 7.57 (s, 2H), 10.51 (s, 1H);

Procedure of spiro[indoline-3,4'-pyrano[2,3-c]pyrazole] synthesis: A mixture of hydrazine (1.5 mmol, 47 μ L), ethylacetoacetate, (1mmol, 128 μ L), malononitrile (1 mmol, 63 μ L), isatin (1 mmol, 0.147 g), oleic acid (12.5 mol%, 40 μ L) were taken in the 3 ml of ethanol and it was stirred at 80 °C for 1 h. After completion, the reaction was quenched with water and the formed solids were filtered through Whatman filter paper and were washed with distilled water (3×5 mL) and hexane (2×5mL) for removing oleic acid. The Light red powder thus obtained was essentially pure.

6'-amino-3'-methyl-2-oxo-1,2,5',6'-tetrahydro-1'H-spiro[indole-3,4'-pyrano[2,3c]pyrazole]-5'-carbonitrile (7)

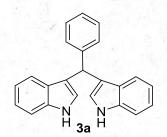
Yield: 94%; Appearance: Light red powder; mp = 286-289 °C (Ref; 285-286 °C)¹⁰; 1H NMR (300 MHz, DMSO-d6) δ 1.53 (s, 3H), 6.80 (d, *J* = 7.5 Hz, 1H), 6.91 (d, *J* = 7.8 Hz, 1H), 6.97-7.05 (m, 2H), 7.26 (s, 3H), 10.61 (s, 1H); 12.30 (s, 1H).

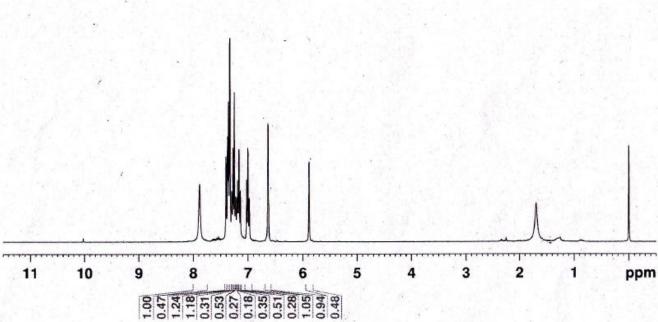
References

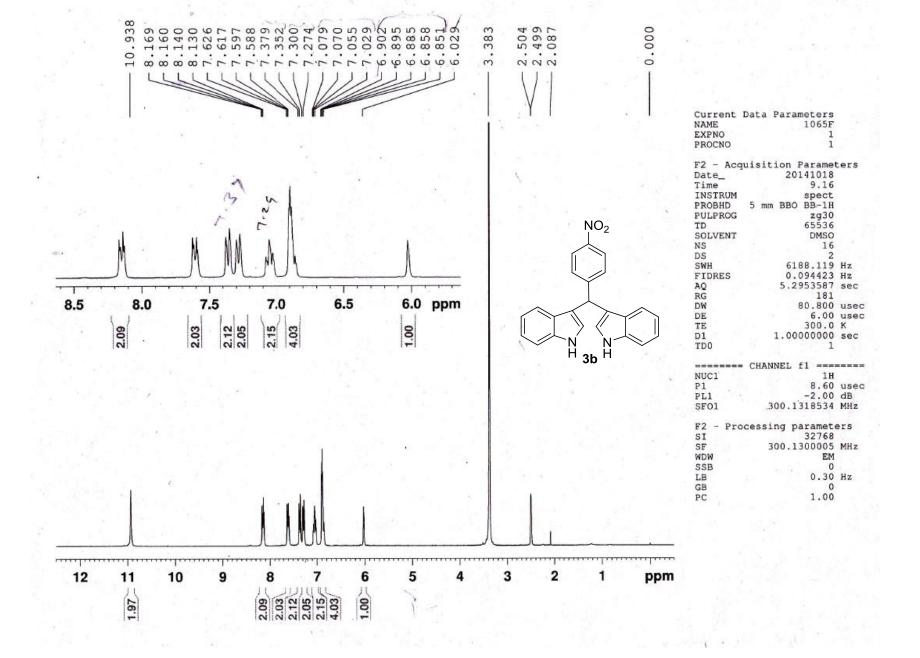
- 1. H. M. Meshram and N. N. Rao, *Indian J. Chem.*, 2013, **52B**, 814–817.
- 2. S. Mishra and R. Ghosh, *Indian J. Chem.*, 2011, **50B**, 1630–1636.
- 3. N. C. Ganguly, S. Roy, P. Mondal and R. Saha, *Tetrahedron Lett.*, 2012, **53**, 7067–7071.
- 4. M. Li and Y. Gu, *Adv. Synth. Catal*, 2012, **354**, 2484–2494.
- 5. P. P. Ghosh and A. R. Das, J. Org. Chem., 2013, 78, 6170–6181.
- 6. D. S. Raghuvanshi and K. N. Singh, J. Heterocycl. Chem., 2010, 47, 1323–1327.
- B. M. Rao, G. N. Reddy, T. V. Reddy, B. L. A. P. Devi, R. B. N. Prasad, J. S. Yadav and B. V. S. Reddy, *Tetrahedron Lett.*, 2013, 54, 2466–2471.
- 8. M. Dabiri, M. Bahramnejad and M. Baghbanzadeh, *Tetrahedron*, 2009, **65**, 9443–9447.
- 9. S.-L. Zhu, S.-J. Ji and Y. Zhang, *Tetrahedron*, 2007, **63**, 9365–9372.
- 10. Y. Zou, Y. Hu, H. Liu and D. Shi, ACS Comb. Sci., 2012, 14, 38–43.

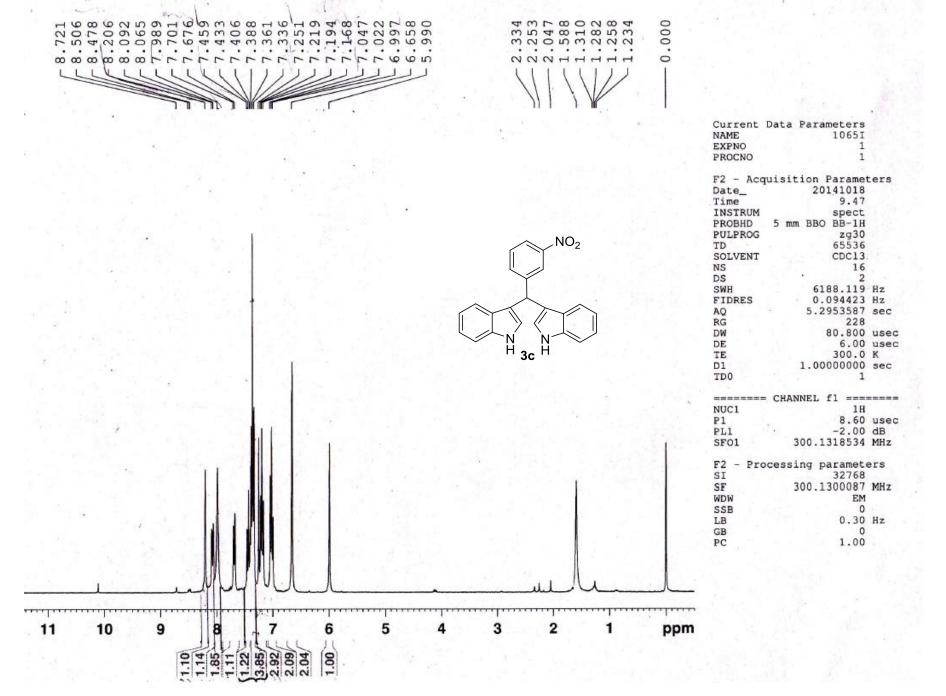
UCCCCCCCCCCCCCCC000

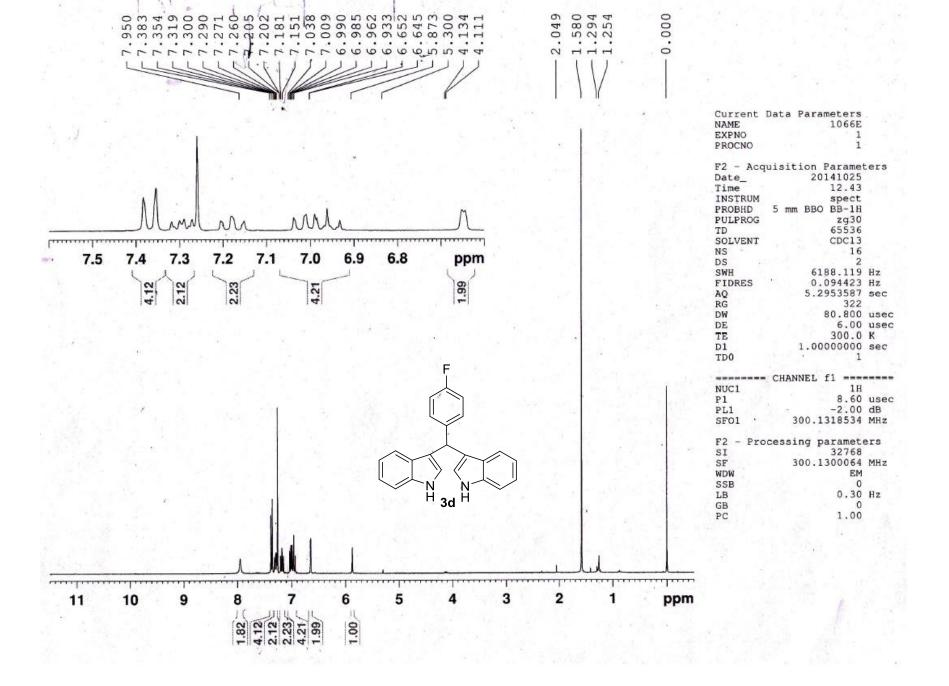
14:31

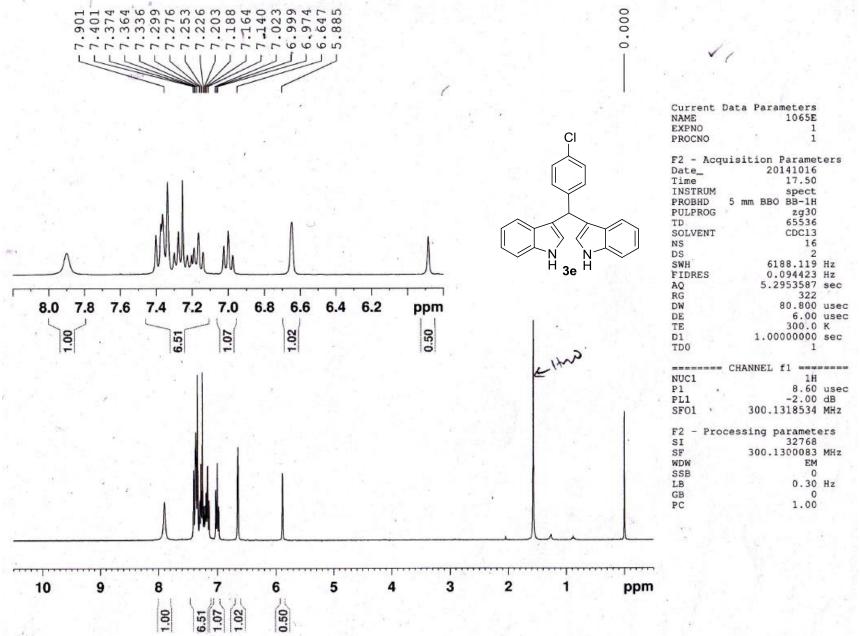

1

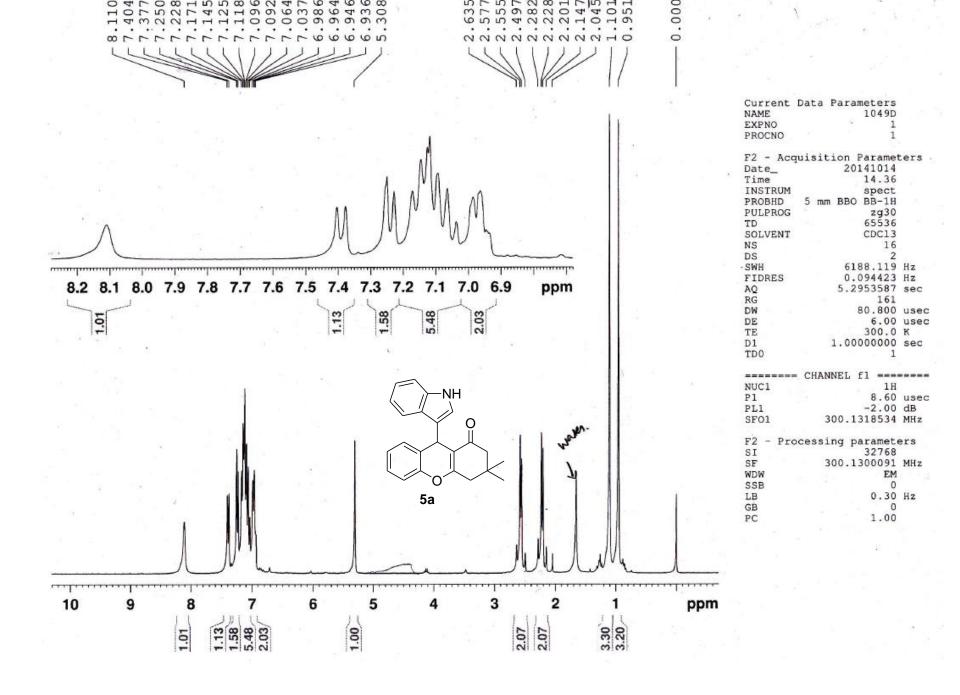

695

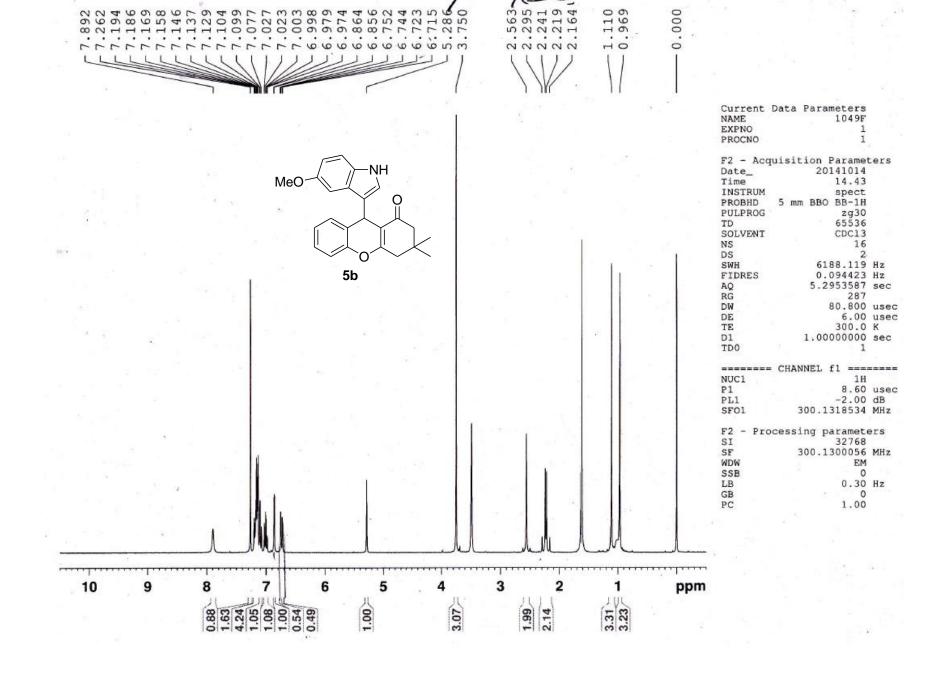

-

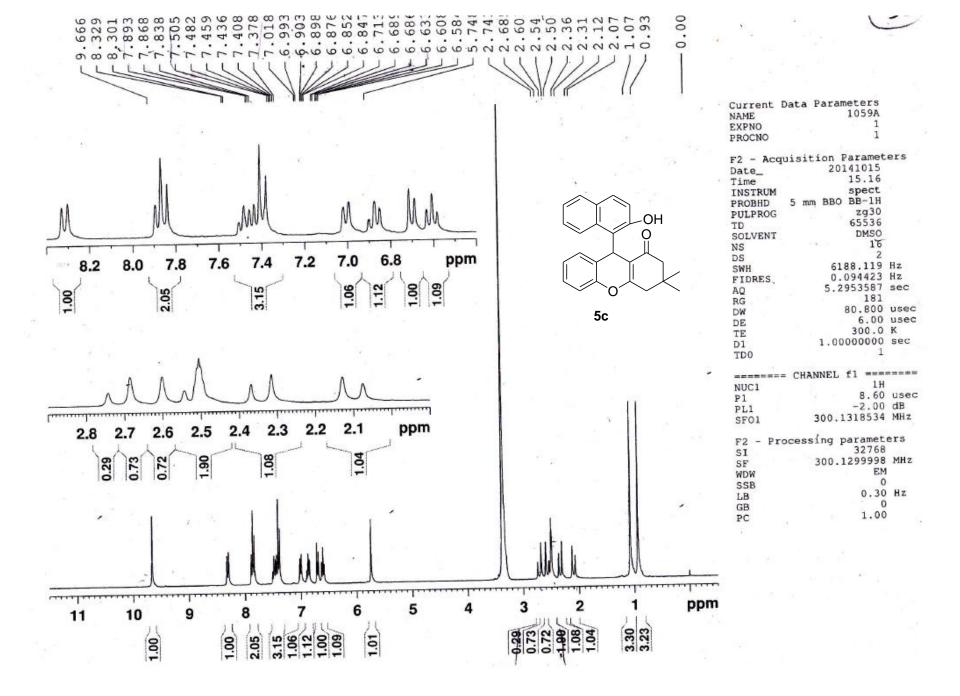

0.000

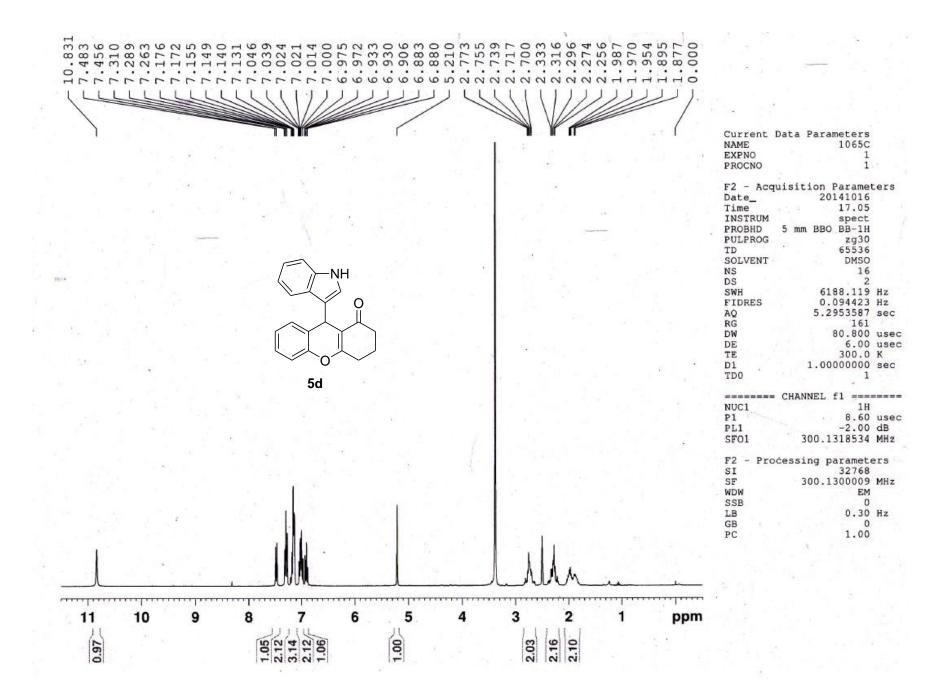

					12	
Current D	ata	Par	ran	net	ers	
NAME				10	73B	
EXPNO					1	
PROCNO					1	
F2 - Acqu	isit					ters
Date_		2	201		024	
Time				13	.59	
INSTRUM				sp	ect	
PROBHD	5 mm	BE	30			
PULPROG					g30	
TD					536	
SOLVENT				CD	C13	
NS	6				16	
DS					2	
SWH					119	
FIDRES					423	
AQ		5.	.29		587	
RG					228	
DW			8			usec
DE						usec
TE					0.0	
D1		1.0)00	000	000	
TD0					1	
********	CHAN	NEI	i f	£1		
NUC1					1H	
P1						usec
PL1					.00	
SF01	3	00.	.13	318	534	MHz
F2 - Proc	essi	ng	pa	ara	met	ers
SI		-			768	
SF	3	00.	.13	300	100	MHz
WDW					EM	
SSB					0	
LB				0	.30	Hz
GB					0	
PC				1	.00	
1.8						

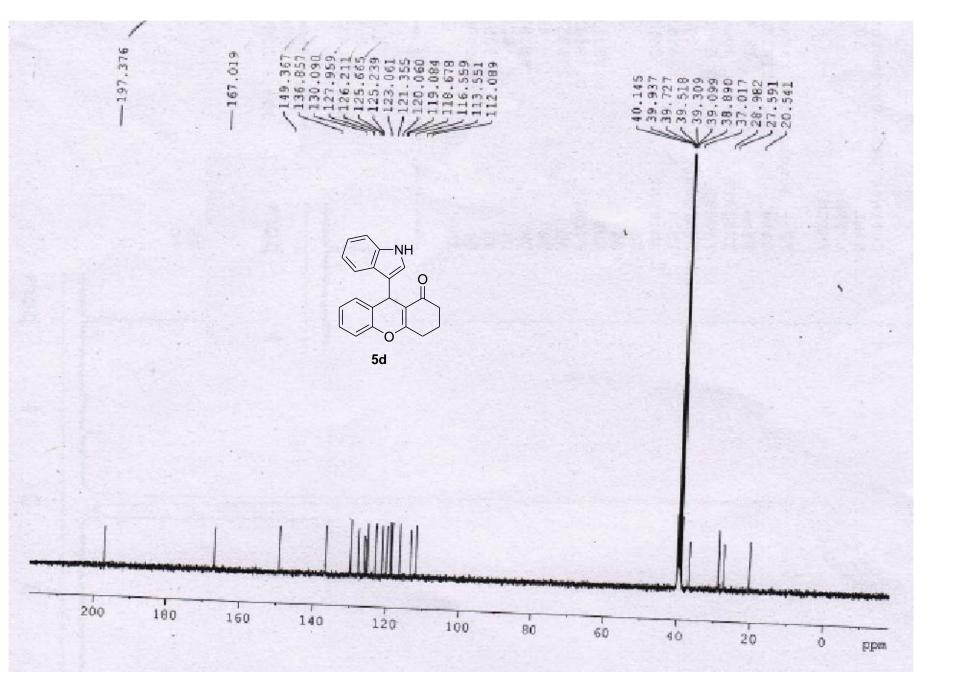


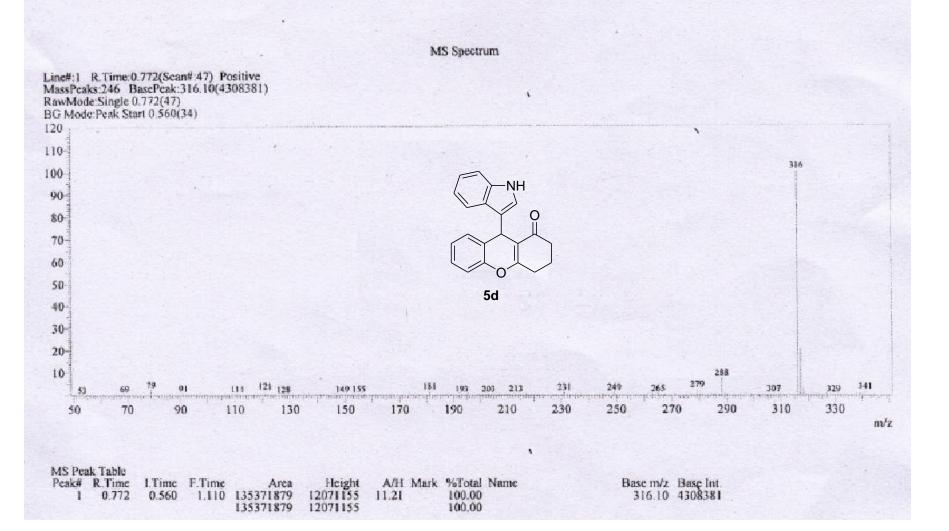


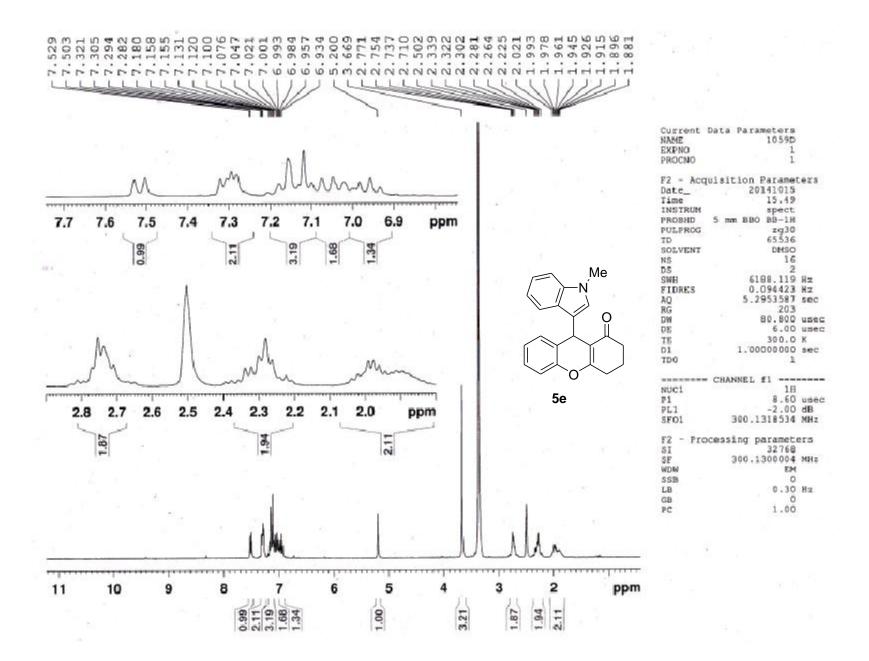


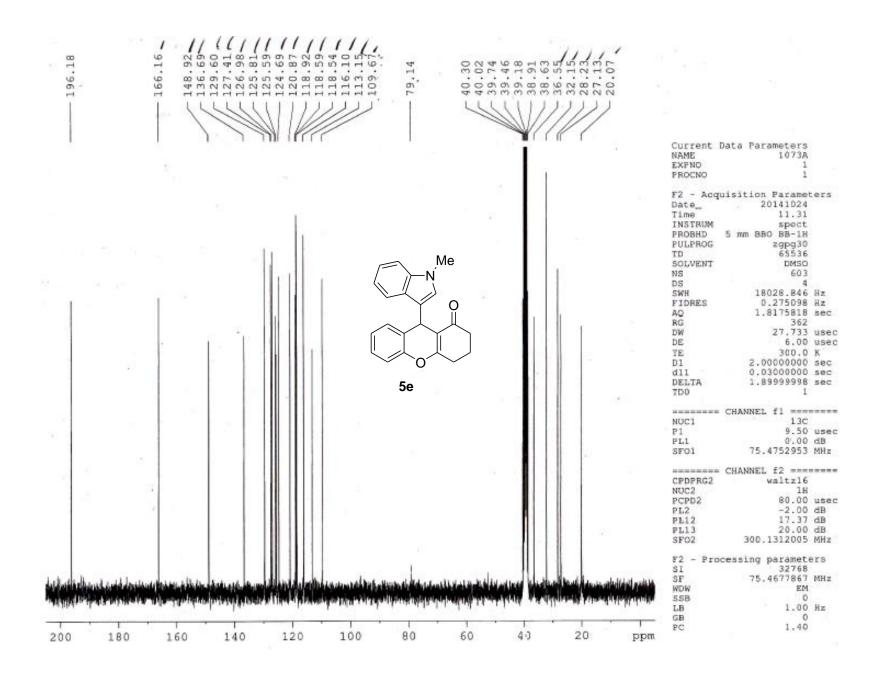


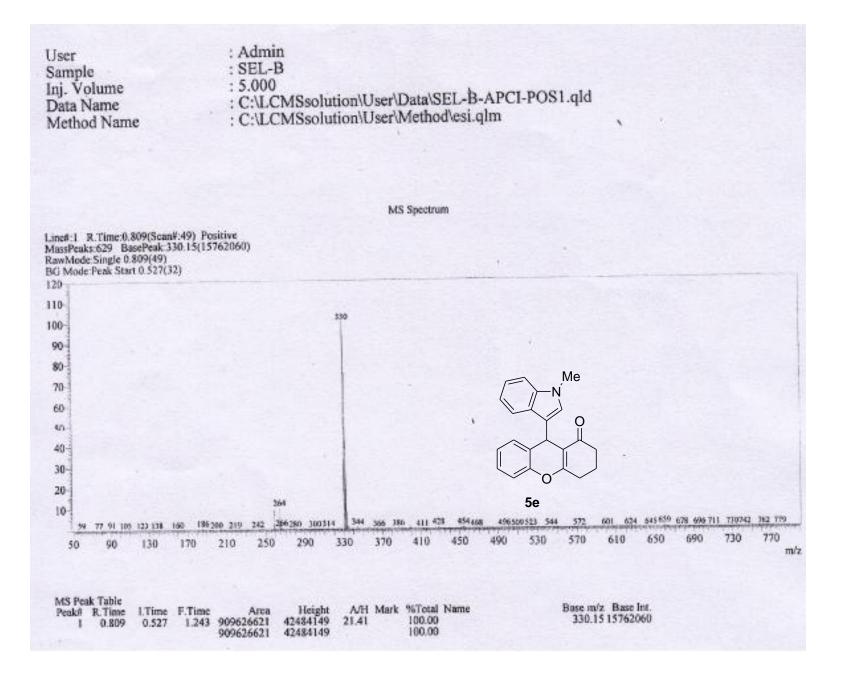



1.6

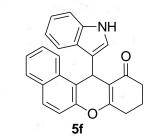


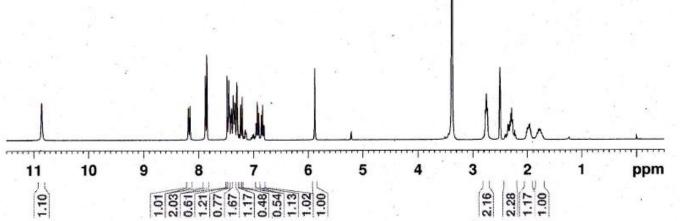




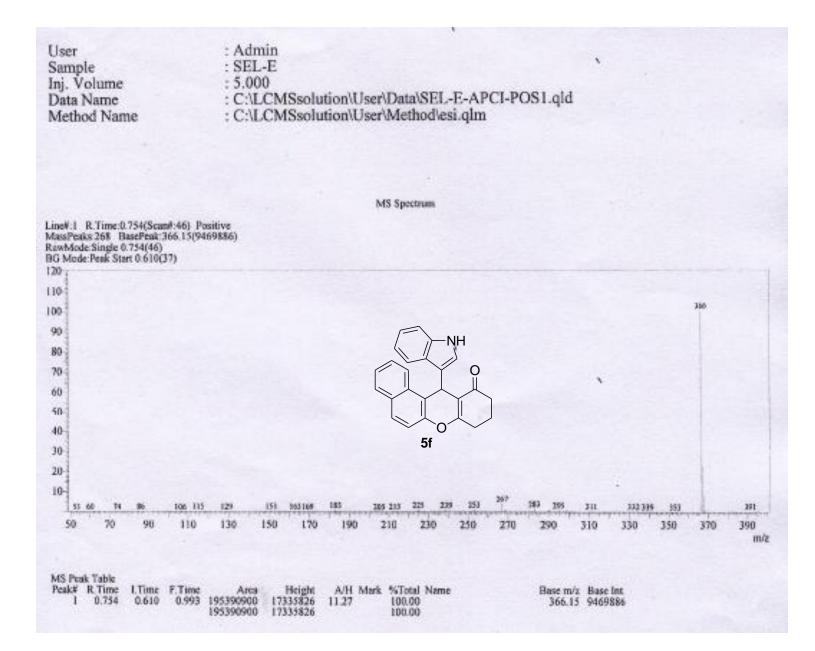


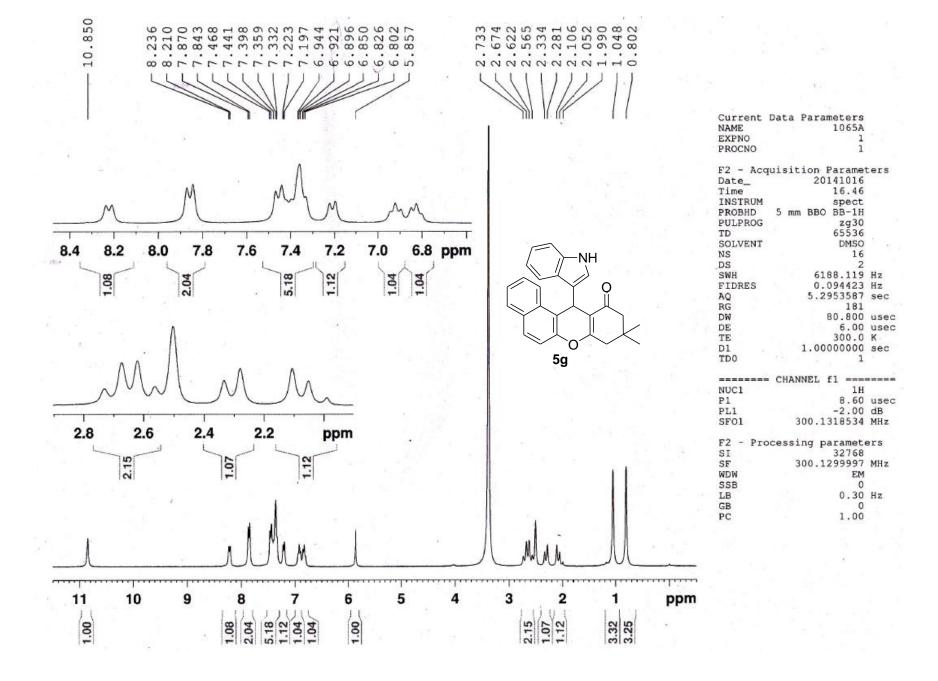
User Sample Inj. Volume Data Name Method Name : Admin : SEL-A : 5.000 : C:\LCMSsolution\User\Data\SEL-A-APCI-POS1.qld : C:\LCMSsolution\User\Method\esi.qlm



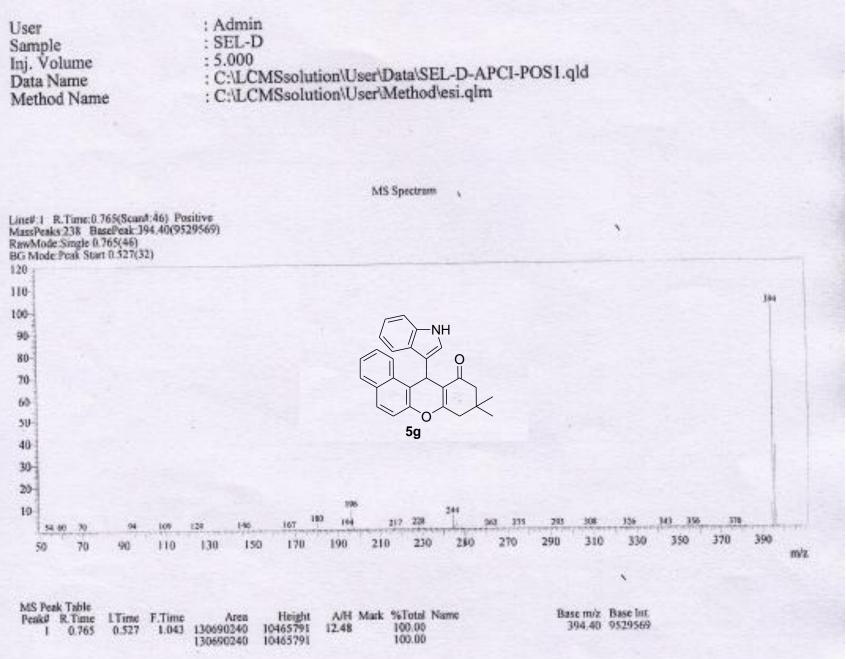


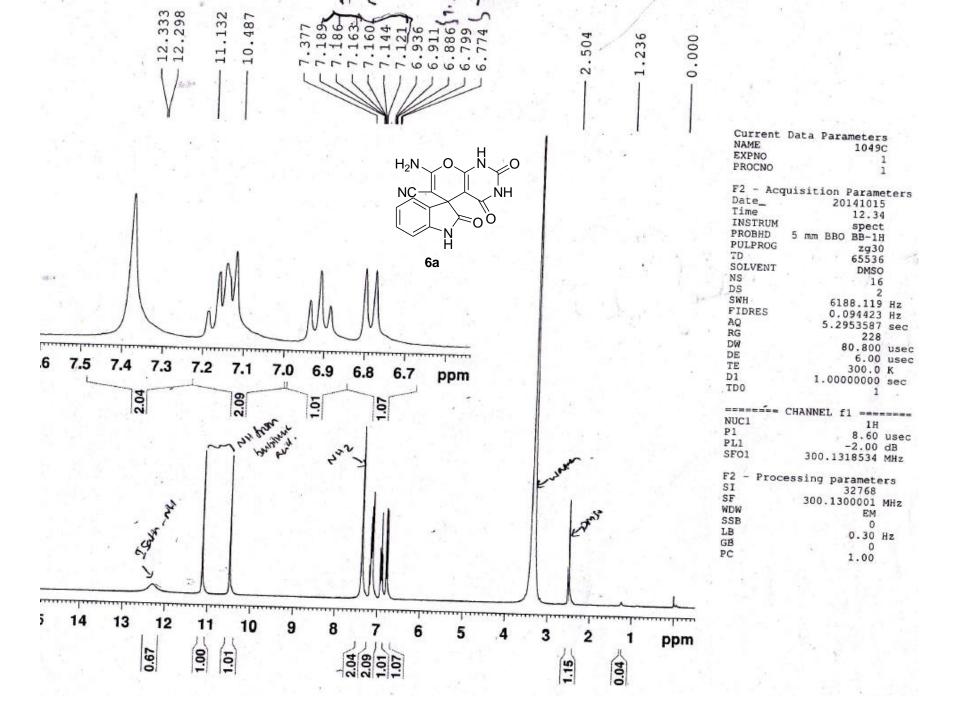
5.5	- I													20. cl						1.22		1.2.5		1.00	1.2.1	1.22	1.2	1.1.2.1		C. +	1125	1000		10.25	222	1	-		1222	10.20		
5) [~ 0	n	0	-	L	N	8	4	0	6	0	5	6	5	∞	3	9	8	5	2	00	3	0	6	\sim	6	3	2	4	0	2	r-I	5	∞	2	5	4	2	6	S I	
0	0 0	O L	0	00	10	00	10	m	-	-	5	5	4	m	0	5	3	0	5	5	m	0	6	0	3	-	~	~	5	3	5	4	N	0	8	0	5	00	5	5	5	
- 23		4 .	-	õ	00	4	4	4	4	4	3	m	m	m	3	N	N	N	5	5	5	5	8	8	8	8	8	5	5	5	3	3	3	3	N	N	5	0	5	5	5	
C)															•						• •						٠						٠			٠	٠	•	٠	•	
-	1 0	0 0	x I	~	5	5	5	5	5	5	5	5	5	5	5	5	5	5	6	9	6	6	9	9	6	9	ъ	2	2	2	2	2	2	2	2	2	ч	Ч	-	-1	-	÷
. 1	1	L	L	L	L	L	L	L	L	L	L	L	1	L	1	J	1	J	J	J	J	J	1	1	1	1	1	L	t	L	L	1	1	J	1	J	1	1	1	1		

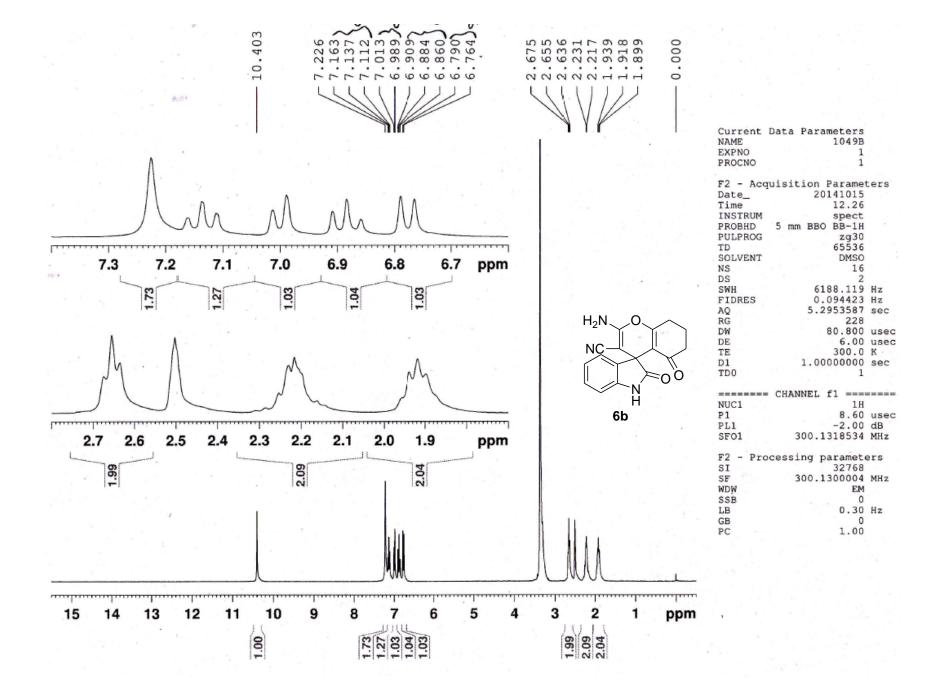

	Curre NAME	me	Da	ca	ra	ra				55		
								τ.	0.6			
	EXPNO										1	
-	PROCN	10									T	
1	F2 -	Aco	qui	sit								cers
	Date_					20						
3	Time							16	6.	. 5	2	
	INSTR	NUS						SI	De	ec	t	
1	PROBI	ID	5	mm	B	BC)	BI	в-	-1	Н	
ä	PULPE	ROG							zc	13	0	
2	TD							65	5.5	53	6	2.18
33	SOLVE	INT						I	٥Ņ	15	0	
1	NS									1	6	
1	DS										2	
- 8	SWH					61	8	8	. 1	11	9	Hz
3	FIDRE	S				0.	0	94	44	12	3	Hz
	AQ	-5			5	.2	9	5:	35	58	7	sec
	RG								1	18	1	
1	DW						8	0	. 8	30	0	used
j.	DE								6.	. 0	0	used
3	TE							3(0.0).	0	K
1	D1				1.	00	0	00	00	00	0	sec
1	TDO										1	
1			= C	HAN	INE	L	f	1				
1	NUC1									1	Н	
1	P1							1	Β.	. 6	0	used
1	PL1											dB
2.2.2	SF01		22	3	00	.1	3	18	8.5	53	4	MHz
	F2 -	Pro	oce	ssi	ng	r	a	ra	an	ne	te	ers
	SI	1323			-					76		
	SF			3	00	.1	3	00	00	00	3	MHz
1	WDW									E	M	-96-12-80
	SSB										0	
	LB							(Ο.			Hz
	GB								1		0	10.020
- 53											-	

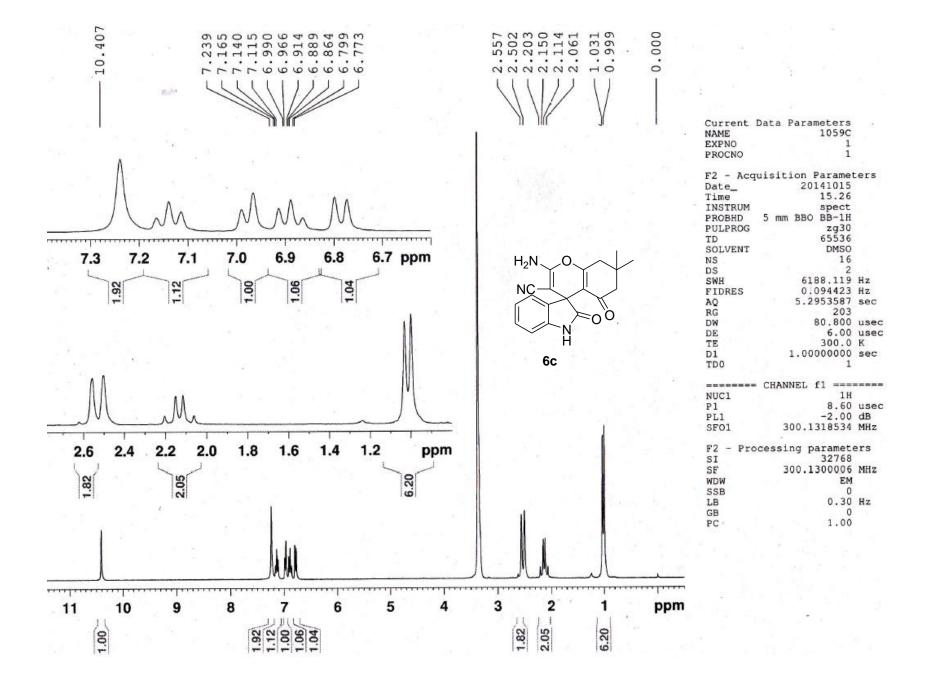


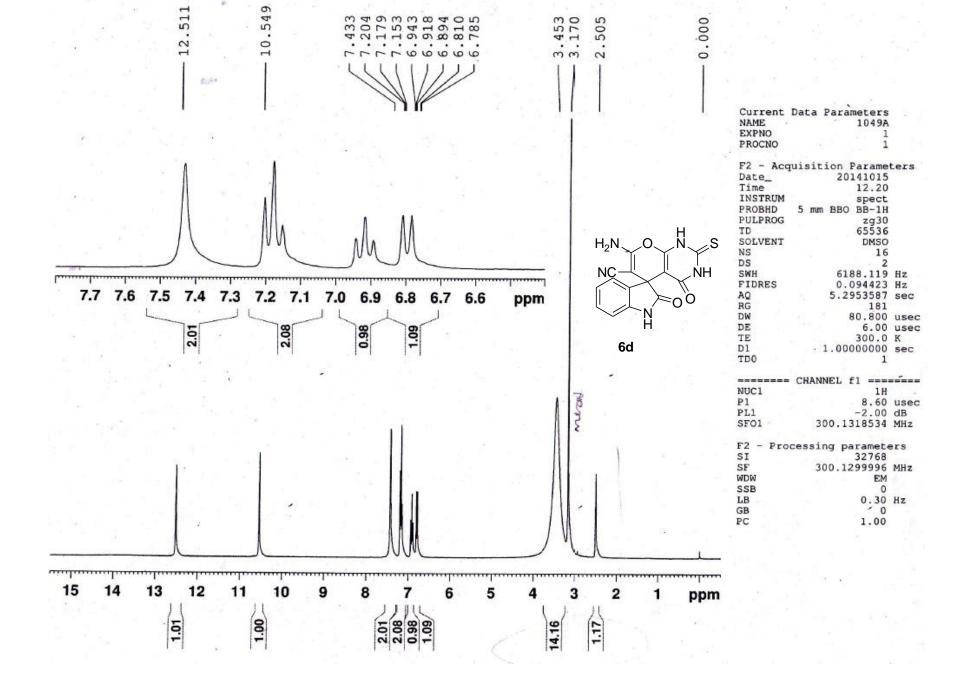
de la




28	908 98 98	339 34 29 55 55 55 55 55 55 55 55 55 55 55 55 55	50 15 29 29 29	.53 .53 01 73	45 89 52 52	0 33 75 04	<i>h</i>		6	
196.	28 28 28 28	2234	112 113 113 113 113 113 113 113 113 113	9 9		02.07	(-	
Ī	(Ill		11111		SN//	1///				
-	·					r (Current Dat NAME EXPNO PROCNO	a Parameters 1074B- 1 1	
			Sf	H O L				Date_ Time INSTRUM	ition Paramet 20141025 16.57 spect mm BBO BB-1H zgpg30 65536 DMSO 1462 4 18028.846 0.275098 1.8175818 322 27.733 6.00 300.0 2.00000000 0.03000000 1.89999998 1	Hz Hz sec usec usec K sec sec sec
ere ble såbette katerike	d where all maindud		aber Latase Hillow a the develo	uther specific its to be a stand out had be a stand	debrinder Umubaude	Letter aller a line	hall book bin Johnster	NUC1 P1 PL1 SF01 	ANNEL f1 13C 9.50 0.00 75.4752953 ANNEL f2 waltz16 1H 80.00 -2.00 17.37 20.00 300.1312005 sing paramete 32768 75.4677867 EM	usec dB MHz usec dB dB dB MHz ers
early and the property is	lingthe house with the district of the second s	and an internation of the s		a handal haldhildhildhildhildhildhildhildhildhildhi	international and balling	Line Hindibildition all	de la	SSB LB GB	1.00	Hz
200	180 160	140 120	100	80 60	40	20 0	ppm	PC	1.40	






196.06		163.20 146.93 136.08 131.01 128.59	125.274 125.274 124.70 124.10 123.36 123.36	- 118.16 - 117.67 - 117.19 - 116.96 - 112.47 - 111.51		01440	000100		Current Da	ta Parameter	s
						к ¹ - 1			Date_ Time INSTRUM PROBHD 5	sition Param 2014102 12.1 spec mm BBO BB-1	1 1 7 0 t H
			5	O O O O O					PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 d11 DELTA TD0	18028.84 0.27509 1.817581 28 27.73 6.0 300. 2.000000 0.0300000 1.8999999	6 0 5 4 6 Hz 8 Hz 8 sec 7 3 usec 0 usec 0 kec 0 sec 0 sec
			1						====== C NUC1 P1 PL1 SF01		C 0 usec 0 dB
				,					CPDPRG2 NUC2 PCPD2 PL2 PL12 PL13 SFO2		6 H O usec O dB 7 dB O dB
	understander in der Gescher Ausgeherter	Lida and a shi bir cite a construction party - to be a party of the state of the state		an anna dhubhan lashadha Mar an an an anna		and the second			F2 - Proce SI SF WDW SSB LB		8
200	180	160 1	40 120	100 80	0 60	40	20	ppm	GB PC	1.4	0

