Supporting Information

Silver Nanoparticles: Facile Synthesis and their Catalytic Application for the degradation of dyes

Kamaldeep Sharma, # Gurpreet Singh, # Gurpreet Singh, # Manoj Kumar and Vandana

Bhalla*

Department of Chemistry, UGC Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar, Punjab-143005- INDIA

vanmanan@yahoo.co.in

Contents

S3-S4 Comparison tables

S5 UV-vis spectra of derivative 3 upon additions of various metal ions as their perchlorate and chloride salt in H_2O/THF .

S6 Graphical representation of rate of formation of AgNPs of derivative 3.

S7 XRD diffraction pattern of AgNPs of derivative 3.

S8 ¹H NMR spectrum of residue obtained after washing precipitates with THF.

S9 Fourier transforms infrared absorption spectra of derivative **3** and residue obtained after filteration of precipitates with THF.

S10 EDX spectrum of resulting precipitates obtained after addition of Ag^+ to the aqueous solution of derivative **3**.

S11 UV-vis spectra of derivative **3** upon various additions of Ag^+ ions in THF and UV-vis spectra of benzaldehyde (10 μ M) upon various additions of Ag^+ ions in H₂O/THF.

S12 UV-vis spectra of derivative 5 and 7 in H_2O/THF upon various additions of water fractions.

S13 SEM image of aggregates of derivative 5 and 7 in H_2O/THF .

S14 TEM images of aggregates of derivative 7 in H_2O/THF (5/5) mixture.

S15 UV–visible spectra of derivative **5** (10 μ m) upon addition of Ag⁺ ions (200 equiv.) at different time intervals in H₂O/THF and graphical representation of the rate of formation of AgNPs of derivative **5**.

S16 UV–visible spectra of derivative **7** (10 μ m) upon addition of Ag⁺ ions (200 equiv.) at different time intervals in H₂O/THF and graphical representation of the rate of formation of AgNPs of derivative **7**.

S17 XRD diffraction patterns of AgNPs of derivative 5 and 7.

S18 Cyclic voltammograms and Onsets of Cathodic peaks and Cathodic peak potentials of AgNO₃ and derivatives **3**, **5** and **7** in the presence of AgNO₃ in H₂O/ACN (1/9, v/v) mixture.

S19 UV–visible spectra of derivative **5** (10 μ m) upon addition of Ag⁺ ions (200 equiv.) at different time intervals in H₂O/THF and graphical representation of the rate of formation of AgNPs of derivative **5** in the presence of KI.

S20-S21 Degradation of methylene blue, methyl orange and eriochrome black T over time using *in-situ* generated AgNPs by derivative **3** as catalyst in the presence of NaBH₄.

S22-S25 Degradation of Rhodamine B, methyl orange, methylene blue and eriochrome black T over time using *in-situ* generated AgNPs by derivative **5** as catalyst in the presence of NaBH₄.

S26-S29 Degradation of methyl orange, methylene blue, Rhodamine B and eriochrome black T over time using *in-situ* generated AgNPs by derivative 7 as catalyst in the presence of NaBH₄.

\$30 UV-vis spectral changes of RhB over time using derivative **3**-stabilized AgNPs as catalyst under visible light irradiations in the presence of triethanolamine (TEOA).

S31-S32 Derivatives 3, 5 and 7 stabilized AgNPs catalyst-reusing experiments.

S33 Blank experiment for the degradation of Rhodamine B, methylene blue, methyl orange and eriochrome black T.

S34 ¹H NMR spectrum of derivative **3**.

S35 Mass spectrum of derivative 3.

S36 ¹H NMR spectrum of derivative **5**.

S37¹³C NMR spectrum of derivative **5**.

S38 Mass spectrum of derivative 5.

S39 ¹H NMR spectrum of derivative **7**.

S40¹³C NMR spectrum of derivative **7**.

S41 Mass spectrum of derivative 7.

Table S1: Comparison of this method in present manuscript over other reported procedure in literature for the preparation of AgNPs.

Method of formation of AgNPs	Reducing agent or surfactant	Reaction temp.	Journals			
Wet chemical route	No	Room temp.	Present manuscript			
Chemical method	Trisodium citrate	90 °C	<i>Chem. Mater.</i> , 2014 , 26, 2836–2845			
Chemical method	Sodium borohydride	-	Journal of Materials, 2014 , 2, 6850-6858			
Chemical method	poly(acrylic acid) (PAA)	~ 25 °C	<i>Chem. Mater.</i> , 2014 , 26, 1332–1339			
Chaming I worth a 1	NaBH ₄	60 °C				
Chemical method	Trisodium citrate	90 °C	RSC Adv., 2014, 4, 3974– 3983.			
Chemical method	NaOH	Room temp.	New J. Chem., 2014 , 38, 2847-2855			
Microwave Heating Method	Sodium laurate (Lau)	Microwave Heating	Angew. Chem. Int. Ed., 2013 , 52, 7446–7450			
Chemical method	NaBH_4	Room temp.	ACS Appl. Mater. Interfaces, 2013, 5, 646–653			
Chemical method	Polyvinylpyrrolidone (PVP)	140 °C	Langmuir, 2012 , 28, 8845–8861			
Photomediated methods Trisodium citrate		Irradiated at 150 W halogen lamp	Nano Lett. 2011 , 11, 2495– 2498			
Photomediated NaBH ₄ methods		4 °C	J. Am. Chem. Soc., 2010 , <i>132</i> , 12502–12510			

Table	S2 :	Comparison	of	present	method	for	the	degradation	of	Rhodamine	В	by	in-situ	generated
AgNPs	s of c	lerivative 3 or	ver	silver ba	ased repo	orted	l sys	tems in litera	ture	e.				

Reaction time	Catalyst used	Rate constants	Amount of	Journals
for degradation of			catalyst used	
RB				
2.5 min.	AgNPs	1.47 min ⁻¹ (2.44×10 ⁻² sec ⁻¹)	3 µl	Present Manuscript
				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
20 min	Citrata apatad AgNDs	0.064 min ⁻¹	501	Chem. Mater., 2014, 26, 2836-
50 mm.	Chrate-coaled Agnes	$(1.06 \times 10^{-3} \text{ sec}^{-1})$	50 µI	2844
14 min.	Ag-coated ZnO NWs	0.11 min^{-1}	-	J. Mater.Chem. C,2009,19,5547
		$(1.83 \times 10^{-3} \text{ sec}^{-1})$		5553
5 min.	Ag-graphene oxide NCs	0.38 min^{-1}	-	J. Hazard. Mater., 263P (2013)
		$(6.33 \times 10^{-3} \text{ sec}^{-1})$		5260
7 min.	AgI@TiO ₂	0.44 min^{-1}	10 mg	Dalton Trans., 2013, 42, 8796-
	nanoparticles	$(7.33 \times 10^{-3} \text{ sec}^{-1})$		8801
150 min.	Ag@TiO ₂	0.02029 min ⁻¹	80 mg	CrystEngComm, 2014, 16, 2384-
		$(3.38 \times 10^{-4} \text{ sec}^{-1})$		2394
120 min.	Ag:ZnO nanostructures	100×10 ⁻⁴ min ⁻¹	30 ml	Appl. Phys. A, (2012) 107:401-
	photocatalysts	$(1.67 \times 10^{-4} \text{ sec}^{-1})$		410
4 min.	Fe ₃ O ₄ @SiO ₂ @AgCl : Ag	1.015 min ⁻¹	5 ml	J. Mater. Chem., 2012, 22,
	nanocomposites	$(1.69 \times 10^{-2} \text{ sec}^{-1})$		5171–5176

Fig. S1 UV-vis spectra of derivative **3** (10 μ M) upon additions of 100 equivalents of various metal ions as their perchlorate salt in H₂O/THF (9.5/0.5), buffered with HEPES, pH = 7.0.Same equivalents of aqueous solution of AgNO₃ was used in case of Ag⁺ metal ion.

Fig. S2 UV-vis spectra of derivative **3** (10 μ M) upon additions of 100 equivalents of various metal ions as their chloride salt in H₂O/THF (9.5/0.5), buffered with HEPES, pH = 7.0.

Fig. S3 Graphical representation of the rate of formation of AgNPs of derivative 3. (A) Time (min.) vs. absorbance plot at 470 nm (B) regression plot of A.

The first order¹ rate constant for the formation of AgNPs was calculated from the changes of intensity of absorbance of aggregates of derivative **3** in the presence of Ag^+ ions at different time interval².

From the time vs. absorbance plot at fixed wavelength 470 nm by using first order rate equation we get the rate constant = $k = slope \times 2.303 = 8.31 \times 10^{-5} sec^{-1}$.

¹ Luty-Błocho, M.; Pacławski, K.; Wojnicki, M.; Fitzner, K. *Inorganica Chimica Acta* **2013**, 395 189-196.

² (a) Sau, T. K.; Murphy, C. J. *Langmuir* **2004**, *20*, 6414. (b) Goswami, S.; Das, S.; Aich, K.; Sarkar, D.; Mondal, T. K.; Quah, C. K.; Fun, H-K. *Dalton Trans.* **2013**, *42*, 15113–15119.

Fig. S4 Representative XRD diffraction patterns of AgNPs generated by derivative 3.

Fig. S5 ¹H NMR spectrum of residue obtained after washing precipitates with THF in CDCl₃.

Fig. S6 Fourier transforms infrared absorption spectra of derivative 3 and the residue obtained after washing precipitates with THF

Fig. S7 Energy dispersive X-ray (EDX) analysis of the resulting precipitates supported on a copper grid.

Fig. S8 UV-vis spectra of derivative 3 (10 μ M) upon various additions of Ag⁺ ions (100 equivalents) in pure THF.

Fig. S9 UV-vis spectra of benzaldehyde (10 μ M) upon various additions of Ag⁺ ions (100 equivalents) in H₂O/THF (9.5/0.5).

Fig. S10 UV-vis spectra showing the variation of absorbance of derivative **5** (10 μ M) in H₂O/THF mixture with different fractions of H₂O. Inset: enlarge UV-vis spectra of derivative **5** (10 μ M) with the addition of H₂O/THF mixture in the range of 350-600 nm showing level-off tail.

Water fraction (%)

Fig. S11 UV-vis spectra showing the variation of absorbance of derivative 7 (10 μ M) in H₂O/THF mixture with different fractions of H₂O.

Fig. S12 SEM image of aggregates of derivative 5 in H_2O/THF (7/3) mixture. Scale bar 200 nm.

Fig. S13 SEM image of aggregates of derivative 7 in H_2O/THF (5/5) mixture. Scale bar 300 nm.

Fig. S14 TEM images of aggregates of derivative 7 in H₂O/THF (5/5) mixture showing porous morphology. Scale bar 50 nm.

Fig. S15 (A) UV–visible spectra of derivative **5** (10 μ m) upon addition of Ag⁺ ions (200 equiv.) at different time intervals in H₂O/THF (7/3). Graphical representation of the rate of formation of AgNPs of derivative **5**. (B) Time (hours.) vs. absorbance plot at 460 nm (C) regression plot of B.

Fig. S16 (A) UV–visible spectra of derivative **7** (10 μ m) upon addition of Ag⁺ ions (200 equiv.) at different time intervals in H₂O/THF (5/5). Inset: enlarge UV-vis spectra of derivative **7** (10 μ M) upon addition of Ag⁺ ions in H₂O/THF (5/5) mixture in the range of 325-700 nm showing. band at 430 nm. Graphical representation of the rate of formation of AgNPs of derivative **7**. (B) Time (hours.) vs. absorbance plot at 430 nm (C) regression plot of B.

Fig. S17. Representative XRD diffraction pattern of AgNPs of derivative 5.

Intensity (cps)

Fig. S18. Representative XRD diffraction pattern of AgNPs of derivative 7

17

Fig. S19 Cyclic voltammograms of AgNO₃ and derivatives 3, 5 and 7 in the presence of AgNO₃ in H_2O/ACN (1/9, v/v) mixture.

Table S3. Onsets of Cathodic Peaks (Volts) and Cathodic Peak Potentials (Volts) of AgNO₃ alone and AgNO₃ in the Presence of derivatives **3**, **5** and **7** (10 μ M).

Sample	Onset of cathodic peak	E _{pc}			
AgNO ₃	-0.13 V	-0.19 V			
$3 + \text{AgNO}_3$	-0.18 V	-0.235 V			
$5 + \text{AgNO}_3$	-0.16 V	-0.249 V			
7+ AgNO ₃	-0.15 V	-0.220 V			

Fig. 20 UV–visible spectra of derivative **5** (10 μ m) upon addition of Ag⁺ ions (200 equiv.) at different time intervals in H₂O/THF (7/3) in the presence of KI (50 μ L, 10 μ M). Graphical representation of the rate of formation of AgNPs of derivative **5** in the presence of KI. showing rate constant (B) Time (hours.) vs. absorbance plot at 460 nm (C) regression plot of B.

Fig. S21 (A) Decrease in methylene blue absorbance at 665 nm over time using *in-situ* generated AgNPs by derivative **3** as catalyst in the presence of NaBH₄ (B) Normalized kinetic trace of the absorbance at 665 nm during the degradation of methylene blue. (C) Kinetic rate constant.

Fig. S22 (A) Decrease in methyl orange absorbance at 465 nm over time using *in-situ* generated AgNPs by derivative **3** as catalyst in the presence of NaBH₄ (B) Normalized kinetic trace of the absorbance at 465 nm during the degradation of methyl orange. (C) Kinetic rate constant.

Fig. S23 (A) Decrease in eriochrome black T absorbance at 545 nm over time using *in-situ* generated AgNPs by derivative 3 as catalyst in the presence of NaBH₄ (B) Normalized kinetic trace of the absorbance at 545 nm during the degradation of eriochrome black T. (C) Kinetic rate constant.

Fig. S24 (A) Decrease in rhodamine B absorbance at 554 nm over time using *in-situ* generated AgNPs by derivative **5** as catalyst in the presence of $NaBH_4$ (B) Normalized kinetic trace of the absorbance at 554 nm during the degradation of rhodamine B. (C) Kinetic rate constant.

Fig. S25 (A) Decrease in methyl orange absorbance at 465 nm over time using *in-situ* generated AgNPs by derivative 5 as catalyst in the presence of NaBH₄ (B) Normalized kinetic trace of the absorbance at 465 nm during the degradation of methyl orange. (C) Kinetic rate constant.

Fig. S26 (A) Decrease in methylene blue absorbance at 665 nm over time using *in-situ* generated AgNPs by derivative 5 as catalyst in the presence of NaBH₄ (B) Normalized kinetic trace of the absorbance at 665 nm during the degradation of methylene blue. (C) Kinetic rate constant.

Fig. S27 (A) Decrease in eriochrome black T absorbance at 545 nm over time using *in-situ* generated AgNPs by derivative **5** as catalyst in the presence of NaBH₄ (B) Normalized kinetic trace of the absorbance at 554 nm during the degradation of eriochrome black T. (C) Kinetic rate constant.

Fig. S28 (A) Decrease in methyl orange absorbance at 465 nm over time using *in-situ* generated AgNPs by derivative **7** as catalyst in the presence of $NaBH_4$ (B) Normalized kinetic trace of the absorbance at 465 nm during the degradation of methyl orange. (C) Kinetic rate constant.

Fig. S29 (A) Decrease in methylene blue absorbance at 665 nm over time using *in-situ* generated AgNPs by derivative 7 as catalyst in the presence of $NaBH_4$ (B) Normalized kinetic trace of the absorbance at 665 nm during the degradation of methylene blue. (C) Kinetic rate constant.

Fig. S30 (A) Decrease in Rhodamine B absorbance at 554 nm over time using *in-situ* generated AgNPs by derivative 7 as catalyst in the presence of NaBH₄ (B) Normalized kinetic trace of the absorbance at 554 nm during the degradation of Rhodamine B. (C) Kinetic rate constant.

Fig. S31 (A) Decrease in eriochrome black T absorbance at 545 nm over time using *in-situ* generated AgNPs by derivative 7 as catalyst in the presence of NaBH₄ (B) Normalized kinetic trace of the absorbance at 545 nm during the degradation of eriochrome black T. (C) Kinetic rate constant.

Fig. 32 UV-vis spectral changes of RhB over time using derivative **3**-stabilized AgNPs as catalyst under visible light irradiations in the presence of triethanolamine (TEOA). Inset: photographs show colour change of aqueous RhB solution after 2 hours under visible light irradiations in the presence of

Procedure for the catalyst-reusing sequence in the AgNPs-catalyzed degradation of RhB : The catalytic degradation of Rhodamine B in the presence of NaBH₄ aqueous solution was chosen as a model reaction to investigate the reusability of *in-situ* generated AgNPs catalyst by derivatives **3**, **5** and **7**. Firstly, same volume of aqueous solution of NaBH₄ (0.2 M) and RhB (2 mM) solution were mixed to obtain the mixture solution of NaBH₄ and RhB dye and diluted 100 times in deionized water. Addition of catalytic amount of *in-situ* generated AgNPs solution by derivative **3** (10 µL, 10 nmol), **5** (10 µL, 20 nmol) and **7** (10 µL, 20 nmol) to the solution of RhB results in colour change from pink to colourless. After the catalytic degradation of Rhodamine B, resulting reaction mixture containing AgNPs catalyst was subjected at least three times (in case of AgNPs of derivatives **3** and **5**) and five times (AgNPs of derivative **7**) to reaction for the next catalytic sequence by adding Rhodamine B (50 µL, 2 mM) and NaBH₄ (50 µL, 0.2 mM) to the reaction mixture.

Fig. S36 UV-visible spectra for the degradation of (A) Rhodamine B (B) methylene blue (C) methyl orange and (D) eriochrome black T using NaBH₄ in the absence of AgNPs catalyst: (a) 0 min and (b) after 24 hours.

Fig. S37 ¹H NMR spectrum of derivative 3 in CDCl₃.

Fig. S38 Mass spectrum of derivative 3.

Fig. 39 ¹H NMR spectrum of derivative 5 in $CDCl_3$

Fig. 40^{13} C NMR spectrum of derivative 5 in CDCl₃

Fig. 41 Mass spectrum of derivative 5.

Fig. S42 ¹H NMR spectrum of compound 7 in CDCl₃.

Fig. S43¹³C NMR spectrum of compound 7 in CDCl₃.

Fig. S44 Mass spectrum of compound 7.